refactor: nrf24l01 example, dynamic payload width

This commit is contained in:
IOsetting 2023-02-05 00:38:20 +08:00
parent 818cf63861
commit 3bd91cb818
3 changed files with 288 additions and 95 deletions

View File

@ -17,12 +17,20 @@
#include "py32f0xx_bsp_printf.h"
#include "nrf24l01.h"
/* MODE_TX, MODE_RX, MODE_RX_INT */
/* Mode options: MODE_TX, MODE_RX, MODE_RX_INT */
#define MODE_TX 0
#define MODE_TX_FAST 1
#define MODE_RX 2
#define MODE_RX_INT 3
#define NRF24_MODE MODE_TX_FAST
#define NRF24_MODE MODE_RX
/* Payload width options: fixed or dynamic */
#define PAYLOAD_WIDTH_MODE_FIXED 0
#define PAYLOAD_WIDTH_MODE_DYNAMIC 1
#define NRF24_PAYLOAD_WIDTH_MODE PAYLOAD_WIDTH_MODE_DYNAMIC
#if (NRF24_MODE == MODE_TX || NRF24_MODE == MODE_TX_FAST)
uint8_t payload[] = {
@ -66,13 +74,38 @@ int main(void)
}
printf("nRF24L01 check: succ\r\n");
#if (NRF24_PAYLOAD_WIDTH_MODE == PAYLOAD_WIDTH_MODE_DYNAMIC)
NRF24L01_SetEnableDynamicPayloads(1);
NRF24L01_SetEnableAckPayload(1);
#endif
#if (NRF24_MODE == MODE_RX)
uint8_t pipe, length;
printf("nRF24L01 in RX polling mode\r\n");
NRF24L01_RX_Mode(TX_ADDRESS, RX_ADDRESS);
NRF24L01_DumpConfig();
while(1)
while (1)
{
NRF24L01_RxPacket(RX_BUF);
if (NRF24L01_RXFIFO_GetStatus() != NRF24L01_RXFIFO_STATUS_EMPTY)
{
#if (NRF24_PAYLOAD_WIDTH_MODE == PAYLOAD_WIDTH_MODE_DYNAMIC)
pipe = NRF24L01_ReadPayload(RX_BUF, &length, 1);
#else
pipe = NRF24L01_ReadPayload(RX_BUF, &length, 0);
#endif
BSP_UART_TxString("P:");
BSP_UART_TxHex8(pipe);
BSP_UART_TxString(",L:");
BSP_UART_TxHex8(length);
BSP_UART_TxChar(':');
for (int i = 0; i < length; i++)
{
BSP_UART_TxHex8(RX_BUF[i]);
}
BSP_UART_TxString("\r\n");
NRF24L01_ClearIRQFlags();
}
}
#elif (NRF24_MODE == MODE_RX_INT)
@ -83,18 +116,28 @@ int main(void)
while(1);
#elif (NRF24_MODE == MODE_TX)
uint8_t length = 0;
printf("nRF24L01 in TX mode\r\n");
NRF24L01_TX_Mode(RX_ADDRESS, TX_ADDRESS);
NRF24L01_DumpConfig();
while(1)
{
NRF24L01_TxPacket(payload, 32);
LL_mDelay(100);
#if (NRF24_PAYLOAD_WIDTH_MODE == PAYLOAD_WIDTH_MODE_DYNAMIC)
length++;
#else
length = NRF24L01_PLOAD_WIDTH;
#endif
NRF24L01_TxPacket(payload, length);
if (length == 32)
{
length = 0;
}
LL_mDelay(200);
}
#elif (NRF24_MODE == MODE_TX_FAST)
uint8_t length = 0;
printf("nRF24L01 in fast TX mode\r\n");
NRF24L01_TX_Mode(RX_ADDRESS, TX_ADDRESS);
NRF24L01_DumpConfig();
@ -102,7 +145,12 @@ int main(void)
uint8_t succ = 0, err = 0;
while (1)
{
if (NRF24L01_TxFast(payload) != 0)
#if (NRF24_PAYLOAD_WIDTH_MODE == PAYLOAD_WIDTH_MODE_DYNAMIC)
length++;
#else
length = NRF24L01_PLOAD_WIDTH;
#endif
if (NRF24L01_TxFast(payload, length) != 0)
{
NRF24L01_ResetTX();
err++;
@ -117,7 +165,11 @@ int main(void)
err = 0;
succ = 0;
}
LL_mDelay(5);
if (length == 32)
{
length = 0;
}
LL_mDelay(50);
}
#endif
@ -126,9 +178,25 @@ int main(void)
#if (NRF24_MODE == MODE_RX_INT)
void EXTI4_15_IRQHandler(void)
{
uint8_t pipe, length;
if(LL_EXTI_IsActiveFlag(LL_EXTI_LINE_4))
{
NRF24L01_IntRxPacket(RX_BUF);
#if (NRF24_PAYLOAD_WIDTH_MODE == PAYLOAD_WIDTH_MODE_DYNAMIC)
pipe = NRF24L01_ReadPayload(RX_BUF, &length, 1);
#else
pipe = NRF24L01_ReadPayload(RX_BUF, &length, 0);
#endif
BSP_UART_TxString("P:");
BSP_UART_TxHex8(pipe);
BSP_UART_TxString(",L:");
BSP_UART_TxHex8(length);
BSP_UART_TxChar(':');
for (int i = 0; i < length; i++)
{
BSP_UART_TxHex8(RX_BUF[i]);
}
BSP_UART_TxString("\r\n");
NRF24L01_ClearIRQFlags();
LL_EXTI_ClearFlag(LL_EXTI_LINE_4);
}
}

View File

@ -31,12 +31,11 @@ uint8_t NRF24L01_Write_Reg(uint8_t reg, uint8_t value)
{
uint8_t status;
CSN_LOW;
if (reg < NRF24L01_CMD_REGISTER_W)
if (reg < NRF24L01_CMD_W_REGISTER)
{
// This is a register access
status = SPI_TxRxByte(NRF24L01_CMD_REGISTER_W | (reg & NRF24L01_MASK_REG_MAP));
status = SPI_TxRxByte(NRF24L01_CMD_W_REGISTER | (reg & NRF24L01_MASK_REG_MAP));
SPI_TxRxByte(value);
}
else
{
@ -98,8 +97,8 @@ uint8_t NRF24L01_Check(void)
uint8_t *ptr = (uint8_t *)NRF24L01_TEST_ADDR;
// Write test TX address and read TX_ADDR register
NRF24L01_Write_From_Buf(NRF24L01_CMD_REGISTER_W | NRF24L01_REG_TX_ADDR, ptr, 5);
NRF24L01_Read_To_Buf(NRF24L01_CMD_REGISTER_R | NRF24L01_REG_TX_ADDR, rxbuf, 5);
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER | NRF24L01_REG_TX_ADDR, ptr, 5);
NRF24L01_Read_To_Buf(NRF24L01_CMD_R_REGISTER | NRF24L01_REG_TX_ADDR, rxbuf, 5);
// Compare buffers, return error on first mismatch
for (i = 0; i < 5; i++)
@ -127,7 +126,7 @@ void NRF24L01_FlushTX(void)
void NRF24L01_ResetTX(void)
{
NRF24L01_Write_Reg(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_STATUS, NRF24L01_FLAG_MAX_RT); // Clear max retry flag
NRF24L01_Write_Reg(NRF24L01_REG_STATUS, NRF24L01_FLAG_MAX_RT); // Clear max retry flag
CE_LOW;
CE_HIGH;
}
@ -138,14 +137,16 @@ void NRF24L01_ResetTX(void)
* NRF24L01_FLAG_TX_DSENT
* NRF24L01_FLAG_MAX_RT
*/
void NRF24L01_ClearIRQFlag(uint8_t reg) {
NRF24L01_Write_Reg(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_STATUS, reg);
void NRF24L01_ClearIRQFlag(uint8_t reg)
{
NRF24L01_Write_Reg(NRF24L01_REG_STATUS, reg);
}
/**
* Clear RX_DR, TX_DS and MAX_RT bits of the STATUS register
*/
void NRF24L01_ClearIRQFlags(void) {
void NRF24L01_ClearIRQFlags(void)
{
uint8_t reg;
reg = NRF24L01_Read_Reg(NRF24L01_REG_STATUS);
reg |= NRF24L01_MASK_STATUS_IRQ;
@ -158,21 +159,21 @@ void NRF24L01_ClearIRQFlags(void) {
void _NRF24L01_Config(uint8_t *tx_addr)
{
// TX Address
NRF24L01_Write_From_Buf(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_TX_ADDR, tx_addr, NRF24L01_ADDR_WIDTH);
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER + NRF24L01_REG_TX_ADDR, tx_addr, NRF24L01_ADDR_WIDTH);
// RX P0 Payload Width
NRF24L01_Write_Reg(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_RX_PW_P0, NRF24L01_PLOAD_WIDTH);
NRF24L01_Write_Reg(NRF24L01_REG_RX_PW_P0, NRF24L01_PLOAD_WIDTH);
// Enable Auto ACK
NRF24L01_Write_Reg(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_EN_AA, 0x3f);
NRF24L01_Write_Reg(NRF24L01_REG_EN_AA, 0x3f);
// Enable RX channels
NRF24L01_Write_Reg(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_EN_RXADDR, 0x3f);
NRF24L01_Write_Reg(NRF24L01_REG_EN_RXADDR, 0x3f);
// RF channel: 2.400G + 0.001 * x
NRF24L01_Write_Reg(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_RF_CH, 40);
// 000+0+[0:1Mbps,1:2Mbps]+[00:-18dbm,01:-12dbm,10:-6dbm,11:0dbm]+[0:LNA_OFF,1:LNA_ON]
NRF24L01_Write_Reg(NRF24L01_REG_RF_CH, 40);
// Format: 000+0+[0:1Mbps,1:2Mbps]+[00:-18dbm,01:-12dbm,10:-6dbm,11:0dbm]+[0:LNA_OFF,1:LNA_ON]
// 01:1Mbps,-18dbm; 03:1Mbps,-12dbm; 05:1Mbps,-6dbm; 07:1Mbps,0dBm
// 09:2Mbps,-18dbm; 0b:2Mbps,-12dbm; 0d:2Mbps,-6dbm; 0f:2Mbps,0dBm,
NRF24L01_Write_Reg(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_RF_SETUP, 0x03);
NRF24L01_Write_Reg(NRF24L01_REG_RF_SETUP, 0x03);
// 0A:delay=250us,count=10, 1A:delay=500us,count=10
NRF24L01_Write_Reg(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_SETUP_RETR, 0x0a);
NRF24L01_Write_Reg(NRF24L01_REG_SETUP_RETR, 0x0a);
}
/**
@ -183,7 +184,7 @@ void NRF24L01_RX_Mode(uint8_t *rx_addr, uint8_t *tx_addr)
CE_LOW;
_NRF24L01_Config(tx_addr);
// RX Address of P0
NRF24L01_Write_From_Buf(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_RX_ADDR_P0, rx_addr, NRF24L01_ADDR_WIDTH);
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER + NRF24L01_REG_RX_ADDR_P0, rx_addr, NRF24L01_ADDR_WIDTH);
/**
REG 0x00:
0)PRIM_RX 0:TX 1:RX
@ -195,7 +196,7 @@ void NRF24L01_RX_Mode(uint8_t *rx_addr, uint8_t *tx_addr)
6)MASK_RX_DR 0:IRQ low 1:NO IRQ
7)Reserved 0
*/
NRF24L01_Write_Reg(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_CONFIG, 0x0f); //RX,PWR_UP,CRC16,EN_CRC
NRF24L01_Write_Reg(NRF24L01_REG_CONFIG, 0x0f); //RX,PWR_UP,CRC16,EN_CRC
CE_HIGH;
NRF24L01_FlushRX();
}
@ -209,62 +210,61 @@ void NRF24L01_TX_Mode(uint8_t *rx_addr, uint8_t *tx_addr)
_NRF24L01_Config(tx_addr);
// On the PTX the **TX_ADDR** must be the same as the **RX_ADDR_P0** and as the pipe address for the designated pipe
// RX_ADDR_P0 will be used for receiving ACK
NRF24L01_Write_From_Buf(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_RX_ADDR_P0, tx_addr, NRF24L01_ADDR_WIDTH);
NRF24L01_Write_Reg(NRF24L01_CMD_REGISTER_W + NRF24L01_REG_CONFIG, 0x0e); //TX,PWR_UP,CRC16,EN_CRC
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER + NRF24L01_REG_RX_ADDR_P0, tx_addr, NRF24L01_ADDR_WIDTH);
NRF24L01_Write_Reg(NRF24L01_REG_CONFIG, 0x0e); //TX,PWR_UP,CRC16,EN_CRC
CE_HIGH;
}
/**
* Hold till data received and written to rx_buf
*/
uint8_t NRF24L01_RxPacket(uint8_t *rx_buf)
uint8_t NRF24L01_RX_GetPayloadWidth(void)
{
uint8_t status, result = 0;
while(IRQ);
CE_LOW;
status = NRF24L01_Read_Reg(NRF24L01_REG_STATUS);
BSP_UART_TxHex8(status);
BSP_UART_TxChar(':');
if(status & NRF24L01_FLAG_RX_DR)
{
NRF24L01_Read_To_Buf(NRF24L01_CMD_RX_PLOAD_R, rx_buf, NRF24L01_PLOAD_WIDTH);
for (int i = 0; i < 32; i++)
{
BSP_UART_TxHex8(RX_BUF[i]);
}
BSP_UART_TxString("\r\n");
result = 1;
NRF24L01_ClearIRQFlag(NRF24L01_FLAG_RX_DR);
}
CE_HIGH;
return result;
uint8_t value;
CSN_LOW;
value = NRF24L01_Read_Reg(NRF24L01_CMD_R_RX_PL_WID);
CSN_HIGH;
return value;
}
/**
* Read in interrupt
*/
void NRF24L01_IntRxPacket(uint8_t *rx_buf)
uint8_t NRF24L01_RXFIFO_GetStatus(void)
{
uint8_t status;
CE_LOW;
status = NRF24L01_Read_Reg(NRF24L01_REG_STATUS);
BSP_UART_TxHex8(status);
BSP_UART_TxChar(':');
uint8_t reg = NRF24L01_Read_Reg(NRF24L01_REG_FIFO_STATUS);
return (reg & NRF24L01_MASK_RXFIFO);
}
if(status & NRF24L01_FLAG_RX_DR)
uint8_t NRF24L01_ReadPayload(uint8_t *pBuf, uint8_t *length, uint8_t dpl)
{
uint8_t status, pipe;
// Extract a payload pipe number from the STATUS register
status = NRF24L01_Read_Reg(NRF24L01_REG_STATUS);
pipe = (status & NRF24L01_MASK_RX_P_NO) >> 1;
// RX FIFO empty?
if (pipe < 6)
{
NRF24L01_Read_To_Buf(NRF24L01_CMD_RX_PLOAD_R, rx_buf, NRF24L01_PLOAD_WIDTH);
for (int i = 0; i < 32; i++)
if (dpl)
{
BSP_UART_TxHex8(RX_BUF[i]);
// Get payload width
*length = NRF24L01_RX_GetPayloadWidth();
if (*length > 32)
{
// Error
*length = 0;
NRF24L01_FlushRX();
}
}
BSP_UART_TxString("\r\n");
NRF24L01_ClearIRQFlag(NRF24L01_FLAG_RX_DR);
else
{
*length = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P0 + pipe);
}
// Read a payload from the RX FIFO
if (*length)
{
NRF24L01_Read_To_Buf(NRF24L01_CMD_R_RX_PAYLOAD, pBuf, *length);
}
return pipe;
}
status |= NRF24L01_MASK_STATUS_IRQ;
NRF24L01_Write_Reg(NRF24L01_REG_STATUS, status);
CE_HIGH;
// pipe value = 110: Not Used, 111: RX FIFO Empty
*length = 0;
return pipe;
}
/**
@ -275,7 +275,7 @@ uint8_t NRF24L01_TxPacket(uint8_t *tx_buf, uint8_t len)
uint8_t status = 0x00;
CE_LOW;
len = len > NRF24L01_PLOAD_WIDTH? NRF24L01_PLOAD_WIDTH : len;
NRF24L01_Write_From_Buf(NRF24L01_CMD_TX_PLOAD_W, tx_buf, len);
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_TX_PAYLOAD, tx_buf, len);
CE_HIGH;
while(IRQ != 0); // Waiting send finish
@ -302,13 +302,13 @@ uint8_t NRF24L01_TxPacket(uint8_t *tx_buf, uint8_t len)
return status;
}
void NRF24L01_TxPacketFast(const void *txbuf)
void NRF24L01_TxPacketFast(const void *pBuf, uint8_t len)
{
NRF24L01_Write_From_Buf(NRF24L01_CMD_TX_PLOAD_W, txbuf, NRF24L01_PLOAD_WIDTH);
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_TX_PAYLOAD, pBuf, len);
CE_HIGH;
}
uint8_t NRF24L01_TxFast(const void *txbuf)
uint8_t NRF24L01_TxFast(const void *pBuf, uint8_t len)
{
uint8_t status;
// Blocking only if FIFO is full. This will loop and block until TX is successful or fail
@ -321,10 +321,82 @@ uint8_t NRF24L01_TxFast(const void *txbuf)
}
} while (status & NRF24L01_FLAG_TX_FULL);
NRF24L01_TxPacketFast(txbuf);
NRF24L01_TxPacketFast(pBuf, len);
return 0;
}
void NRF24L01_ToggleFeatures(void)
{
CSN_LOW;
NRF24L01_Write_Reg(NRF24L01_CMD_ACTIVATE, 0x73);
CSN_HIGH;
}
void NRF24L01_SetEnableDynamicPayloads(uint8_t mode)
{
uint8_t reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if (mode == 0)
{
// Disable dynamic payload throughout the system
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg & (~NRF24L01_FEATURE_EN_DPL));
// If it didn't work, the features are not enabled
reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if ((reg & NRF24L01_FEATURE_EN_DPL) != 0)
{
// Enable them and try again
NRF24L01_ToggleFeatures();
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg & (~NRF24L01_FEATURE_EN_DPL));
}
// Disable dynamic payload on all pipes
NRF24L01_Write_Reg(NRF24L01_REG_DYNPD, 0);
}
else
{
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_DPL);
reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if ((reg & NRF24L01_FEATURE_EN_DPL) != NRF24L01_FEATURE_EN_DPL)
{
NRF24L01_ToggleFeatures();
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_DPL);
}
// Enable dynamic payload on all pipes
NRF24L01_Write_Reg(NRF24L01_REG_DYNPD, NRF24L01_DYNPD_DPL_P0 | NRF24L01_DYNPD_DPL_P1
| NRF24L01_DYNPD_DPL_P2 | NRF24L01_DYNPD_DPL_P3 | NRF24L01_DYNPD_DPL_P4 | NRF24L01_DYNPD_DPL_P5);
}
}
void NRF24L01_SetEnableAckPayload(uint8_t mode)
{
uint8_t reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if (mode == 0)
{
// Disable ack payload and dynamic payload features
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg &(~NRF24L01_FEATURE_EN_ACK_PAY));
// If it didn't work, the features are not enabled
reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if ((reg & NRF24L01_FEATURE_EN_ACK_PAY) != NRF24L01_FEATURE_EN_ACK_PAY)
{
// Enable them and try again
NRF24L01_ToggleFeatures();
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg &(~NRF24L01_FEATURE_EN_ACK_PAY));
}
}
else
{
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_ACK_PAY);
reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if ((reg & NRF24L01_FEATURE_EN_ACK_PAY) != NRF24L01_FEATURE_EN_ACK_PAY)
{
NRF24L01_ToggleFeatures();
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_ACK_PAY);
}
// Enable dynamic payload on pipes 0 & 1
reg = NRF24L01_Read_Reg(NRF24L01_REG_DYNPD);
NRF24L01_Write_Reg(NRF24L01_REG_DYNPD, reg | NRF24L01_DYNPD_DPL_P0 | NRF24L01_DYNPD_DPL_P1);
}
}
/**
* Dump nRF24L01 configuration
*/
@ -502,4 +574,16 @@ void NRF24L01_DumpConfig(void) {
// RX_PW_P5
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P5);
printf("[0x%02X] RX_PW_P5=%u\r\n",NRF24L01_REG_RX_PW_P5,i);
// NRF24L01_REG_FIFO_STATUS
i = NRF24L01_Read_Reg(NRF24L01_REG_FIFO_STATUS);
printf("[0x%02X] FIFO_STATUS=0x%02x\r\n",NRF24L01_REG_FIFO_STATUS,i);
// NRF24L01_REG_DYNPD
i = NRF24L01_Read_Reg(NRF24L01_REG_DYNPD);
printf("[0x%02X] DYNPD=0x%02x\r\n",NRF24L01_REG_DYNPD,i);
// NRF24L01_REG_FEATURE
i = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
printf("[0x%02X] FEATURE=0x%02x\r\n",NRF24L01_REG_FEATURE,i);
}

View File

@ -11,14 +11,21 @@
#define IRQ READ_BIT(GPIOA->IDR, LL_GPIO_PIN_4)
// SPI(nRF24L01) commands
#define NRF24L01_CMD_REGISTER_R 0x00 // Register read
#define NRF24L01_CMD_REGISTER_W 0x20 // Register write
#define NRF24L01_CMD_R_REGISTER 0x00 // Register read
#define NRF24L01_CMD_W_REGISTER 0x20 // Register write
/**
* ACTIVATE. For NRF24L01 only, removed from NRF24L01+ product specs
* - https://github.com/nRF24/RF24/issues/401
*
* This write command followed by data 0x73 activates the following features: R_RX_PL_WID, W_ACK_PAYLOAD, W_TX_PAYLOAD_NOACK.
* A new ACTIVATE command with the same data deactivates them again. This is executable in power down or stand by modes only.
*/
#define NRF24L01_CMD_ACTIVATE 0x50 // (De)Activates R_RX_PL_WID, W_ACK_PAYLOAD, W_TX_PAYLOAD_NOACK features
#define NRF24L01_CMD_RX_PLOAD_WID_R 0x60 // Read RX-payload width for the top R_RX_PAYLOAD in the RX FIFO.
#define NRF24L01_CMD_RX_PLOAD_R 0x61 // Read RX payload
#define NRF24L01_CMD_TX_PLOAD_W 0xA0 // Write TX payload
#define NRF24L01_CMD_ACK_PAYLOAD_W 0xA8 // Write ACK payload
#define NRF24L01_CMD_TX_PAYLOAD_NOACK_W 0xB0 //Write TX payload and disable AUTOACK
#define NRF24L01_CMD_R_RX_PL_WID 0x60 // Read RX-payload width for the top R_RX_PAYLOAD in the RX FIFO. Flush RX FIFO if the read value is larger than 32 bytes
#define NRF24L01_CMD_R_RX_PAYLOAD 0x61 // Read RX payload
#define NRF24L01_CMD_W_TX_PAYLOAD 0xA0 // Write TX payload
#define NRF24L01_CMD_W_ACK_PAYLOAD 0xA8 // 1010 1PPP, Used in RX mode. Write Payload to be transmitted together with ACK packet on PIPE PPP. (PPP valid in the range from 000 to 101)
#define NRF24L01_CMD_W_TX_PAYLOAD_NOACK 0xB0 // Used in TX mode. Disables AUTOACK on this specific packet
#define NRF24L01_CMD_FLUSH_TX 0xE1 // Flush TX FIFO
#define NRF24L01_CMD_FLUSH_RX 0xE2 // Flush RX FIFO
#define NRF24L01_CMD_REUSE_TX_PL 0xE3 // Reuse TX payload
@ -56,17 +63,42 @@
// Register bits definitions
#define NRF24L01_CONFIG_PRIM_RX 0x01 // PRIM_RX bit in CONFIG register
#define NRF24L01_CONFIG_PWR_UP 0x02 // PWR_UP bit in CONFIG register
// Enable dynamic payload length on data pipes
#define NRF24L01_DYNPD_DPL_P5 0x20
#define NRF24L01_DYNPD_DPL_P4 0x10
#define NRF24L01_DYNPD_DPL_P3 0x08
#define NRF24L01_DYNPD_DPL_P2 0x04
#define NRF24L01_DYNPD_DPL_P1 0x02
#define NRF24L01_DYNPD_DPL_P0 0x01
/**
* EN_DYN_ACK - this bit enables the W_TX_PAYLOAD_NOACK command
*
* The PTX can set the NO_ACK flag bit in the Packet Control Field with this command: W_TX_PAYLOAD_NOACK
* However, the function must first be enabled in the FEATURE register by setting the EN_DYN_ACK bit.
* When you use this option the PTX goes directly to standby-I mode after transmitting the packet. The PRX
* does not transmit an ACK packet when it receives the packet.
*/
#define NRF24L01_FEATURE_EN_DYN_ACK 0x01 // EN_DYN_ACK bit in FEATURE register
/**
* EN_ACK_PAY - Enables Payload with ACK
* If ACK packet payload is activated, ACK packets have dynamic payload lengths and the Dynamic Payload
* Length feature should be enabled for pipe 0 on the PTX and PRX. This is to ensure that they receive the
* ACK packets with payloads. If the ACK payload is more than 15 byte in 2Mbps mode the ARD must be
* 500µS or more, and if the ACK payload is more than 5 byte in 1Mbps mode the ARD must be 500µS or
* more. In 250kbps mode (even when the payload is not in ACK) the ARD must be 500µS or more.
*/
#define NRF24L01_FEATURE_EN_ACK_PAY 0x02 // EN_ACK_PAY bit in FEATURE register
#define NRF24L01_FEATURE_EN_DPL 0x04 // EN_DPL bit in FEATURE register
#define NRF24L01_FEATURE_EN_DPL 0x04 // EN_DPL bit in FEATURE register, enables Dynamic Payload Length
// Status Flags
#define NRF24L01_FLAG_RX_DR 0x40 // RX_DR bit (data ready RX FIFO interrupt)
#define NRF24L01_FLAG_TX_DS 0x20 // TX_DS bit (data sent TX FIFO interrupt)
#define NRF24L01_FLAG_MAX_RT 0x10 // MAX_RT bit (maximum number of TX re-transmits interrupt)
#define NRF24L01_FLAG_IT_BITS 0x70 // RX_DR|TX_DS|MAX_RT
#define NRF24L01_FLAG_TX_FULL 0x01 // TX FIFO full flag. 1: TX FIFO full. 0: Available locations in TX FIFO
// Register masks definitions
#define NRF24L01_MASK_REG_MAP 0x1F // Mask bits[4:0] for CMD_RREG and CMD_WREG commands
#define NRF24L01_MASK_CRC 0x0C // Mask for CRC bits [3:2] in CONFIG register
@ -86,6 +118,11 @@
// Register masks definitions
#define NRF24L01_MASK_REG_MAP 0x1F // Mask bits[4:0] for CMD_RREG and CMD_WREG commands
// RXFIFO status
#define NRF24L01_RXFIFO_STATUS_DATA 0x00 // The RX FIFO contains data and available locations
#define NRF24L01_RXFIFO_STATUS_EMPTY 0x01 // The RX FIFO is empty
#define NRF24L01_RXFIFO_STATUS_FULL 0x02 // The RX FIFO is full
#define NRF24L01_RXFIFO_STATUS_ERROR 0x03 // Impossible state: RX FIFO cannot be empty and full at the same time
#define NRF24L01_ADDR_WIDTH 5 // RX/TX address width
#define NRF24L01_PLOAD_WIDTH 32 // Payload width
@ -126,15 +163,19 @@ uint8_t NRF24L01_Read_To_Buf(uint8_t reg,uint8_t *pBuf,uint8_t len);
*/
uint8_t NRF24L01_Write_From_Buf(uint8_t reg, const uint8_t *pBuf,uint8_t len);
/**
* Hold till data received and written to rx_buf
*/
uint8_t NRF24L01_RxPacket(uint8_t *rx_buf);
void NRF24L01_SetEnableDynamicPayloads(uint8_t mode);
void NRF24L01_SetEnableAckPayload(uint8_t mode);
/**
* Receive data in interrupt
* Get status of the RX FIFO
*/
void NRF24L01_IntRxPacket(uint8_t *rx_buf);
uint8_t NRF24L01_RXFIFO_GetStatus(void);
/**
* Read received data (no fifo status check, no status clear, just read)
*/
uint8_t NRF24L01_ReadPayload(uint8_t *pBuf, uint8_t *length, uint8_t dpl);
/**
* Send data in tx_buf and wait till data is sent or max re-tr reached
@ -144,7 +185,7 @@ uint8_t NRF24L01_TxPacket(uint8_t *tx_buf, uint8_t len);
/**
* Send data in FIFO without sync ack
*/
uint8_t NRF24L01_TxFast(const void *txbuf);
uint8_t NRF24L01_TxFast(const void *pBuf, uint8_t len);
/**
* Switch NRF24L01 to RX mode