#include #include "nrf24l01.h" #include "py32f0xx_bsp_printf.h" uint8_t RX_BUF[NRF24L01_PLOAD_WIDTH]; uint8_t TX_BUF[NRF24L01_PLOAD_WIDTH]; void NRF24L01_Init(void) { CSN_HIGH; } /** * Read a 1-bit register */ uint8_t NRF24L01_Read_Reg(uint8_t reg) { uint8_t value; CSN_LOW; SPI_TxRxByte(reg); value = SPI_TxRxByte(NRF24L01_CMD_NOP); CSN_HIGH; return value; } /** * Write a 1-byte register */ uint8_t NRF24L01_Write_Reg(uint8_t reg, uint8_t value) { uint8_t status; CSN_LOW; if (reg < NRF24L01_CMD_W_REGISTER) { // This is a register access status = SPI_TxRxByte(NRF24L01_CMD_W_REGISTER | (reg & NRF24L01_MASK_REG_MAP)); SPI_TxRxByte(value); } else { // This is a single byte command or future command/register status = SPI_TxRxByte(reg); if ((reg != NRF24L01_CMD_FLUSH_TX) && (reg != NRF24L01_CMD_FLUSH_RX) && (reg != NRF24L01_CMD_REUSE_TX_PL) && (reg != NRF24L01_CMD_NOP)) { // Send register value SPI_TxRxByte(value); } } CSN_HIGH; return status; } /** * Read a multi-byte register * reg - register to read * buf - pointer to the buffer to write * len - number of bytes to read */ uint8_t NRF24L01_Read_To_Buf(uint8_t reg, uint8_t *buf, uint8_t len) { CSN_LOW; uint8_t status = SPI_TxRxByte(reg); while (len--) { *buf++ = SPI_TxRxByte(NRF24L01_CMD_NOP); } CSN_HIGH; return status; } /** * Write a multi-byte register * reg - register to write * buf - pointer to the buffer with data * len - number of bytes to write */ uint8_t NRF24L01_Write_From_Buf(uint8_t reg, const uint8_t *buf, uint8_t len) { CSN_LOW; uint8_t status = SPI_TxRxByte(reg); while (len--) { SPI_TxRxByte(*buf++); } CSN_HIGH; return status; } uint8_t NRF24L01_Check(void) { uint8_t rxbuf[5]; uint8_t i; uint8_t *ptr = (uint8_t *)NRF24L01_TEST_ADDR; // Write test TX address and read TX_ADDR register NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER | NRF24L01_REG_TX_ADDR, ptr, 5); NRF24L01_Read_To_Buf(NRF24L01_CMD_R_REGISTER | NRF24L01_REG_TX_ADDR, rxbuf, 5); // Compare buffers, return error on first mismatch for (i = 0; i < 5; i++) { if (rxbuf[i] != *ptr++) return 1; } return 0; } /** * Flush the RX FIFO */ void NRF24L01_FlushRX(void) { NRF24L01_Write_Reg(NRF24L01_CMD_FLUSH_RX, NRF24L01_CMD_NOP); } /** * Flush the TX FIFO */ void NRF24L01_FlushTX(void) { NRF24L01_Write_Reg(NRF24L01_CMD_FLUSH_TX, NRF24L01_CMD_NOP); } void NRF24L01_ResetTX(void) { NRF24L01_Write_Reg(NRF24L01_REG_STATUS, NRF24L01_FLAG_MAX_RT); // Clear max retry flag CE_LOW; CE_HIGH; } /** * Clear IRQ bit of the STATUS register * reg - NRF24L01_FLAG_RX_DREADY * NRF24L01_FLAG_TX_DSENT * NRF24L01_FLAG_MAX_RT */ void NRF24L01_ClearIRQFlag(uint8_t reg) { NRF24L01_Write_Reg(NRF24L01_REG_STATUS, reg); } /** * Clear RX_DR, TX_DS and MAX_RT bits of the STATUS register */ void NRF24L01_ClearIRQFlags(void) { uint8_t reg; reg = NRF24L01_Read_Reg(NRF24L01_REG_STATUS); reg |= NRF24L01_MASK_STATUS_IRQ; NRF24L01_Write_Reg(NRF24L01_REG_STATUS, reg); } /** * Common configurations of RX and TX, internal function */ void _NRF24L01_Config(uint8_t *tx_addr) { // TX Address NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER + NRF24L01_REG_TX_ADDR, tx_addr, NRF24L01_ADDR_WIDTH); // RX P0 Payload Width NRF24L01_Write_Reg(NRF24L01_REG_RX_PW_P0, NRF24L01_PLOAD_WIDTH); // Enable Auto ACK NRF24L01_Write_Reg(NRF24L01_REG_EN_AA, 0x3f); // Enable RX channels NRF24L01_Write_Reg(NRF24L01_REG_EN_RXADDR, 0x3f); // RF channel: 2.400G + 0.001 * x NRF24L01_Write_Reg(NRF24L01_REG_RF_CH, 40); // Format: 000+0+[0:1Mbps,1:2Mbps]+[00:-18dbm,01:-12dbm,10:-6dbm,11:0dbm]+[0:LNA_OFF,1:LNA_ON] // 01:1Mbps,-18dbm; 03:1Mbps,-12dbm; 05:1Mbps,-6dbm; 07:1Mbps,0dBm // 09:2Mbps,-18dbm; 0b:2Mbps,-12dbm; 0d:2Mbps,-6dbm; 0f:2Mbps,0dBm, NRF24L01_Write_Reg(NRF24L01_REG_RF_SETUP, 0x03); // 0A:delay=250us,count=10, 1A:delay=500us,count=10 NRF24L01_Write_Reg(NRF24L01_REG_SETUP_RETR, 0x0a); } /** * Switch NRF24L01 to RX mode */ void NRF24L01_RX_Mode(uint8_t *rx_addr, uint8_t *tx_addr) { CE_LOW; _NRF24L01_Config(tx_addr); // RX Address of P0 NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER + NRF24L01_REG_RX_ADDR_P0, rx_addr, NRF24L01_ADDR_WIDTH); /** REG 0x00: 0)PRIM_RX 0:TX 1:RX 1)PWR_UP 0:OFF 1:ON 2)CRCO 0:8bit CRC 1:16bit CRC 3)EN_CRC Enabled if any of EN_AA is high 4)MASK_MAX_RT 0:IRQ low 1:NO IRQ 5)MASK_TX_DS 0:IRQ low 1:NO IRQ 6)MASK_RX_DR 0:IRQ low 1:NO IRQ 7)Reserved 0 */ NRF24L01_Write_Reg(NRF24L01_REG_CONFIG, 0x0f); //RX,PWR_UP,CRC16,EN_CRC CE_HIGH; NRF24L01_FlushRX(); } /** * Switch NRF24L01 to TX mode */ void NRF24L01_TX_Mode(uint8_t *rx_addr, uint8_t *tx_addr) { CE_LOW; _NRF24L01_Config(tx_addr); // On the PTX the **TX_ADDR** must be the same as the **RX_ADDR_P0** and as the pipe address for the designated pipe // RX_ADDR_P0 will be used for receiving ACK NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER + NRF24L01_REG_RX_ADDR_P0, tx_addr, NRF24L01_ADDR_WIDTH); NRF24L01_Write_Reg(NRF24L01_REG_CONFIG, 0x0e); //TX,PWR_UP,CRC16,EN_CRC CE_HIGH; } uint8_t NRF24L01_RX_GetPayloadWidth(void) { uint8_t value; CSN_LOW; value = NRF24L01_Read_Reg(NRF24L01_CMD_R_RX_PL_WID); CSN_HIGH; return value; } uint8_t NRF24L01_RXFIFO_GetStatus(void) { uint8_t reg = NRF24L01_Read_Reg(NRF24L01_REG_FIFO_STATUS); return (reg & NRF24L01_MASK_RXFIFO); } uint8_t NRF24L01_ReadPayload(uint8_t *pBuf, uint8_t *length, uint8_t dpl) { uint8_t status, pipe; // Extract a payload pipe number from the STATUS register status = NRF24L01_Read_Reg(NRF24L01_REG_STATUS); pipe = (status & NRF24L01_MASK_RX_P_NO) >> 1; // RX FIFO empty? if (pipe < 6) { if (dpl) { // Get payload width *length = NRF24L01_RX_GetPayloadWidth(); if (*length > 32) { // Error *length = 0; NRF24L01_FlushRX(); } } else { *length = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P0 + pipe); } // Read a payload from the RX FIFO if (*length) { NRF24L01_Read_To_Buf(NRF24L01_CMD_R_RX_PAYLOAD, pBuf, *length); } return pipe; } // pipe value = 110: Not Used, 111: RX FIFO Empty *length = 0; return pipe; } /** * Send data in tx_buf and wait till data is sent or max re-tr reached */ uint8_t NRF24L01_TxPacket(uint8_t *tx_buf, uint8_t len) { uint8_t status = 0x00; CE_LOW; len = len > NRF24L01_PLOAD_WIDTH? NRF24L01_PLOAD_WIDTH : len; NRF24L01_Write_From_Buf(NRF24L01_CMD_W_TX_PAYLOAD, tx_buf, len); CE_HIGH; while(IRQ != 0); // Waiting send finish CE_LOW; status = NRF24L01_Read_Reg(NRF24L01_REG_STATUS); BSP_UART_TxHex8(status); BSP_UART_TxChar(':'); if(status & NRF24L01_FLAG_TX_DS) { BSP_UART_TxString("Data sent: "); for (uint8_t i = 0; i < len; i++) { BSP_UART_TxHex8(tx_buf[i]); } BSP_UART_TxString("\r\n"); NRF24L01_ClearIRQFlag(NRF24L01_FLAG_TX_DS); } else if(status & NRF24L01_FLAG_MAX_RT) { BSP_UART_TxString("Sending exceeds max retries\r\n"); NRF24L01_FlushTX(); NRF24L01_ClearIRQFlag(NRF24L01_FLAG_MAX_RT); } CE_HIGH; return status; } void NRF24L01_TxPacketFast(const void *pBuf, uint8_t len) { NRF24L01_Write_From_Buf(NRF24L01_CMD_W_TX_PAYLOAD, pBuf, len); CE_HIGH; } uint8_t NRF24L01_TxFast(const void *pBuf, uint8_t len) { uint8_t status; // Blocking only if FIFO is full. This will loop and block until TX is successful or fail do { status = NRF24L01_Read_Reg(NRF24L01_REG_STATUS); if (status & NRF24L01_FLAG_MAX_RT) { return 1; } } while (status & NRF24L01_FLAG_TX_FULL); NRF24L01_TxPacketFast(pBuf, len); return 0; } void NRF24L01_ToggleFeatures(void) { CSN_LOW; NRF24L01_Write_Reg(NRF24L01_CMD_ACTIVATE, 0x73); CSN_HIGH; } void NRF24L01_SetEnableDynamicPayloads(uint8_t mode) { uint8_t reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE); if (mode == 0) { // Disable dynamic payload throughout the system NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg & (~NRF24L01_FEATURE_EN_DPL)); // If it didn't work, the features are not enabled reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE); if ((reg & NRF24L01_FEATURE_EN_DPL) != 0) { // Enable them and try again NRF24L01_ToggleFeatures(); NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg & (~NRF24L01_FEATURE_EN_DPL)); } // Disable dynamic payload on all pipes NRF24L01_Write_Reg(NRF24L01_REG_DYNPD, 0); } else { NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_DPL); reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE); if ((reg & NRF24L01_FEATURE_EN_DPL) != NRF24L01_FEATURE_EN_DPL) { NRF24L01_ToggleFeatures(); NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_DPL); } // Enable dynamic payload on all pipes NRF24L01_Write_Reg(NRF24L01_REG_DYNPD, NRF24L01_DYNPD_DPL_P0 | NRF24L01_DYNPD_DPL_P1 | NRF24L01_DYNPD_DPL_P2 | NRF24L01_DYNPD_DPL_P3 | NRF24L01_DYNPD_DPL_P4 | NRF24L01_DYNPD_DPL_P5); } } void NRF24L01_SetEnableAckPayload(uint8_t mode) { uint8_t reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE); if (mode == 0) { // Disable ack payload and dynamic payload features NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg &(~NRF24L01_FEATURE_EN_ACK_PAY)); // If it didn't work, the features are not enabled reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE); if ((reg & NRF24L01_FEATURE_EN_ACK_PAY) != NRF24L01_FEATURE_EN_ACK_PAY) { // Enable them and try again NRF24L01_ToggleFeatures(); NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg &(~NRF24L01_FEATURE_EN_ACK_PAY)); } } else { NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_ACK_PAY); reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE); if ((reg & NRF24L01_FEATURE_EN_ACK_PAY) != NRF24L01_FEATURE_EN_ACK_PAY) { NRF24L01_ToggleFeatures(); NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_ACK_PAY); } // Enable dynamic payload on pipes 0 & 1 reg = NRF24L01_Read_Reg(NRF24L01_REG_DYNPD); NRF24L01_Write_Reg(NRF24L01_REG_DYNPD, reg | NRF24L01_DYNPD_DPL_P0 | NRF24L01_DYNPD_DPL_P1); } } /** * Dump nRF24L01 configuration */ void NRF24L01_DumpConfig(void) { uint8_t i,j; uint8_t aw; uint8_t buf[5]; // CONFIG i = NRF24L01_Read_Reg(NRF24L01_REG_CONFIG); printf("[0x%02X] 0x%02X MASK:%02X CRC:%02X PWR:%s MODE:P%s\r\n", NRF24L01_REG_CONFIG, i, i >> 4, (i & 0x0c) >> 2, (i & 0x02) ? "ON" : "OFF", (i & 0x01) ? "RX" : "TX" ); // EN_AA i = NRF24L01_Read_Reg(NRF24L01_REG_EN_AA); printf("[0x%02X] 0x%02X ENAA: ",NRF24L01_REG_EN_AA,i); for (j = 0; j < 6; j++) { printf("[P%1u%s]%s",j, (i & (1 << j)) ? "+" : "-", (j == 5) ? "\r\n" : " " ); } // EN_RXADDR i = NRF24L01_Read_Reg(NRF24L01_REG_EN_RXADDR); printf("[0x%02X] 0x%02X EN_RXADDR: ",NRF24L01_REG_EN_RXADDR,i); for (j = 0; j < 6; j++) { printf("[P%1u%s]%s",j, (i & (1 << j)) ? "+" : "-", (j == 5) ? "\r\n" : " " ); } // SETUP_AW i = NRF24L01_Read_Reg(NRF24L01_REG_SETUP_AW); aw = (i & 0x03) + 2; printf("[0x%02X] 0x%02X EN_RXADDR=%03X (address width = %u)\r\n",NRF24L01_REG_SETUP_AW,i,i & 0x03,aw); // SETUP_RETR i = NRF24L01_Read_Reg(NRF24L01_REG_SETUP_RETR); printf("[0x%02X] 0x%02X ARD=%04X ARC=%04X (retr.delay=%uus, count=%u)\r\n", NRF24L01_REG_SETUP_RETR, i, i >> 4, i & 0x0F, ((i >> 4) * 250) + 250, i & 0x0F ); // RF_CH i = NRF24L01_Read_Reg(NRF24L01_REG_RF_CH); printf("[0x%02X] 0x%02X (%.3uGHz)\r\n",NRF24L01_REG_RF_CH,i,2400 + i); // RF_SETUP i = NRF24L01_Read_Reg(NRF24L01_REG_RF_SETUP); printf("[0x%02X] 0x%02X CONT_WAVE:%s PLL_LOCK:%s DataRate=", NRF24L01_REG_RF_SETUP, i, (i & 0x80) ? "ON" : "OFF", (i & 0x80) ? "ON" : "OFF" ); switch ((i & 0x28) >> 3) { case 0x00: printf("1M"); break; case 0x01: printf("2M"); break; case 0x04: printf("250k"); break; default: printf("???"); break; } printf("pbs RF_PWR="); switch ((i & 0x06) >> 1) { case 0x00: printf("-18"); break; case 0x01: printf("-12"); break; case 0x02: printf("-6"); break; case 0x03: printf("0"); break; default: printf("???"); break; } printf("dBm\r\n"); // STATUS i = NRF24L01_Read_Reg(NRF24L01_REG_STATUS); printf("[0x%02X] 0x%02X IRQ:%03X RX_PIPE:%u TX_FULL:%s\r\n", NRF24L01_REG_STATUS, i, (i & 0x70) >> 4, (i & 0x0E) >> 1, (i & 0x01) ? "YES" : "NO" ); // OBSERVE_TX i = NRF24L01_Read_Reg(NRF24L01_REG_OBSERVE_TX); printf("[0x%02X] 0x%02X PLOS_CNT=%u ARC_CNT=%u\r\n",NRF24L01_REG_OBSERVE_TX,i,i >> 4,i & 0x0F); // RPD i = NRF24L01_Read_Reg(NRF24L01_REG_RPD); printf("[0x%02X] 0x%02X RPD=%s\r\n",NRF24L01_REG_RPD,i,(i & 0x01) ? "YES" : "NO"); // RX_ADDR_P0 NRF24L01_Read_To_Buf(NRF24L01_REG_RX_ADDR_P0,buf,aw); printf("[0x%02X] RX_ADDR_P0 \"",NRF24L01_REG_RX_ADDR_P0); for (i = 0; i < aw; i++) printf("%X ",buf[i]); printf("\"\r\n"); // RX_ADDR_P1 NRF24L01_Read_To_Buf(NRF24L01_REG_RX_ADDR_P1,buf,aw); printf("[0x%02X] RX_ADDR_P1 \"",NRF24L01_REG_RX_ADDR_P1); for (i = 0; i < aw; i++) printf("%X ",buf[i]); printf("\"\r\n"); // RX_ADDR_P2 printf("[0x%02X] RX_ADDR_P2 \"",NRF24L01_REG_RX_ADDR_P2); for (i = 0; i < aw - 1; i++) printf("%X ",buf[i]); i = NRF24L01_Read_Reg(NRF24L01_REG_RX_ADDR_P2); printf("%X\"\r\n",i); // RX_ADDR_P3 printf("[0x%02X] RX_ADDR_P3 \"",NRF24L01_REG_RX_ADDR_P3); for (i = 0; i < aw - 1; i++) printf("%X ",buf[i]); i = NRF24L01_Read_Reg(NRF24L01_REG_RX_ADDR_P3); printf("%X\"\r\n",i); // RX_ADDR_P4 printf("[0x%02X] RX_ADDR_P4 \"",NRF24L01_REG_RX_ADDR_P4); for (i = 0; i < aw - 1; i++) printf("%X ",buf[i]); i = NRF24L01_Read_Reg(NRF24L01_REG_RX_ADDR_P4); printf("%X\"\r\n",i); // RX_ADDR_P5 printf("[0x%02X] RX_ADDR_P5 \"",NRF24L01_REG_RX_ADDR_P5); for (i = 0; i < aw - 1; i++) printf("%X ",buf[i]); i = NRF24L01_Read_Reg(NRF24L01_REG_RX_ADDR_P5); printf("%X\"\r\n",i); // TX_ADDR NRF24L01_Read_To_Buf(NRF24L01_REG_TX_ADDR,buf,aw); printf("[0x%02X] TX_ADDR \"",NRF24L01_REG_TX_ADDR); for (i = 0; i < aw; i++) printf("%X ",buf[i]); printf("\"\r\n"); // RX_PW_P0 i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P0); printf("[0x%02X] RX_PW_P0=%u\r\n",NRF24L01_REG_RX_PW_P0,i); // RX_PW_P1 i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P1); printf("[0x%02X] RX_PW_P1=%u\r\n",NRF24L01_REG_RX_PW_P1,i); // RX_PW_P2 i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P2); printf("[0x%02X] RX_PW_P2=%u\r\n",NRF24L01_REG_RX_PW_P2,i); // RX_PW_P3 i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P3); printf("[0x%02X] RX_PW_P3=%u\r\n",NRF24L01_REG_RX_PW_P3,i); // RX_PW_P4 i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P4); printf("[0x%02X] RX_PW_P4=%u\r\n",NRF24L01_REG_RX_PW_P4,i); // RX_PW_P5 i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P5); printf("[0x%02X] RX_PW_P5=%u\r\n",NRF24L01_REG_RX_PW_P5,i); // NRF24L01_REG_FIFO_STATUS i = NRF24L01_Read_Reg(NRF24L01_REG_FIFO_STATUS); printf("[0x%02X] FIFO_STATUS=0x%02x\r\n",NRF24L01_REG_FIFO_STATUS,i); // NRF24L01_REG_DYNPD i = NRF24L01_Read_Reg(NRF24L01_REG_DYNPD); printf("[0x%02X] DYNPD=0x%02x\r\n",NRF24L01_REG_DYNPD,i); // NRF24L01_REG_FEATURE i = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE); printf("[0x%02X] FEATURE=0x%02x\r\n",NRF24L01_REG_FEATURE,i); }