/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_bilinear_interp_f32.c
 * Description:  Floating-point bilinear interpolation
 *
 * $Date:        23 April 2021
 * $Revision:    V1.9.0
 *
 * Target Processor: Cortex-M and Cortex-A cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "dsp/interpolation_functions.h"
/**
  @ingroup groupInterpolation
 */
/**
   * @defgroup BilinearInterpolate Bilinear Interpolation
   *
   * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
   * The underlying function f(x, y) is sampled on a regular grid and the interpolation process
   * determines values between the grid points.
   * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
   * Bilinear interpolation is often used in image processing to rescale images.
   * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
   *
   * Algorithm
   * \par
   * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
   * For floating-point, the instance structure is defined as:
   * 
   *   typedef struct
   *   {
   *     uint16_t numRows;
   *     uint16_t numCols;
   *     float32_t *pData;
   * } arm_bilinear_interp_instance_f32;
   * 
   *
   * \par
   * where numRows specifies the number of rows in the table;
   * numCols specifies the number of columns in the table;
   * and pData points to an array of size numRows*numCols values.
   * The data table pTable is organized in row order and the supplied data values fall on integer indexes.
   * That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers.
   *
   * \par
   * Let (x, y) specify the desired interpolation point.  Then define:
   * * XF = floor(x) * YF = floor(y) ** \par * The interpolated output point is computed as: *
* f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) * + f(XF, YF+1) * (1-(x-XF))*(y-YF) * + f(XF+1, YF+1) * (x-XF)*(y-YF) ** Note that the coordinates (x, y) contain integer and fractional components. * The integer components specify which portion of the table to use while the * fractional components control the interpolation processor. * * \par * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. */ /** * @addtogroup BilinearInterpolate * @{ */ /** * @brief Floating-point bilinear interpolation. * @param[in,out] S points to an instance of the interpolation structure. * @param[in] X interpolation coordinate. * @param[in] Y interpolation coordinate. * @return out interpolated value. */ float32_t arm_bilinear_interp_f32( const arm_bilinear_interp_instance_f32 * S, float32_t X, float32_t Y) { float32_t out; float32_t f00, f01, f10, f11; float32_t *pData = S->pData; int32_t xIndex, yIndex, index; float32_t xdiff, ydiff; float32_t b1, b2, b3, b4; xIndex = (int32_t) X; yIndex = (int32_t) Y; /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ if (xIndex < 0 || xIndex > (S->numCols - 2) || yIndex < 0 || yIndex > (S->numRows - 2)) { return (0); } /* Calculation of index for two nearest points in X-direction */ index = (xIndex ) + (yIndex ) * S->numCols; /* Read two nearest points in X-direction */ f00 = pData[index]; f01 = pData[index + 1]; /* Calculation of index for two nearest points in Y-direction */ index = (xIndex ) + (yIndex+1) * S->numCols; /* Read two nearest points in Y-direction */ f10 = pData[index]; f11 = pData[index + 1]; /* Calculation of intermediate values */ b1 = f00; b2 = f01 - f00; b3 = f10 - f00; b4 = f00 - f01 - f10 + f11; /* Calculation of fractional part in X */ xdiff = X - xIndex; /* Calculation of fractional part in Y */ ydiff = Y - yIndex; /* Calculation of bi-linear interpolated output */ out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; /* return to application */ return (out); } /** * @} end of BilinearInterpolate group */