/**
  ******************************************************************************
  * @file    py32f0xx_ll_spi.h
  * @author  MCU Application Team
  * @brief   Header file of SPI LL module.
  ******************************************************************************
  * @attention
  *
  * 
© Copyright (c) Puya Semiconductor Co.
  * All rights reserved.
  *
  * © Copyright (c) 2016 STMicroelectronics.
  * All rights reserved.
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef PY32F0xx_LL_SPI_H
#define PY32F0xx_LL_SPI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "py32f0xx.h"
/** @addtogroup PY32F0xx_LL_Driver
  * @{
  */
#if defined (SPI1) || defined (SPI2)
/** @defgroup SPI_LL SPI
  * @{
  */
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_ES_INIT SPI Exported Init structure
  * @{
  */
/**
  * @brief  SPI Init structures definition
  */
typedef struct
{
  uint32_t TransferDirection;       /*!< Specifies the SPI unidirectional or bidirectional data mode.
                                         This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE.
                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferDirection().*/
  uint32_t Mode;                    /*!< Specifies the SPI mode (Master/Slave).
                                         This parameter can be a value of @ref SPI_LL_EC_MODE.
                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetMode().*/
  uint32_t DataWidth;               /*!< Specifies the SPI data width.
                                         This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH.
                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetDataWidth().*/
  uint32_t ClockPolarity;           /*!< Specifies the serial clock steady state.
                                         This parameter can be a value of @ref SPI_LL_EC_POLARITY.
                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPolarity().*/
  uint32_t ClockPhase;              /*!< Specifies the clock active edge for the bit capture.
                                         This parameter can be a value of @ref SPI_LL_EC_PHASE.
                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPhase().*/
  uint32_t NSS;                     /*!< Specifies whether the NSS signal is managed by hardware (NSS pin) or by software using the SSI bit.
                                         This parameter can be a value of @ref SPI_LL_EC_NSS_MODE.
                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetNSSMode().*/
  uint32_t BaudRate;                /*!< Specifies the BaudRate prescaler value which will be used to configure the transmit and receive SCK clock.
                                         This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER.
                                         @note The communication clock is derived from the master clock. The slave clock does not need to be set.
                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetBaudRatePrescaler().*/
  uint32_t BitOrder;                /*!< Specifies whether data transfers start from MSB or LSB bit.
                                         This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER.
                                         This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferBitOrder().*/
  uint32_t SlaveSpeedMode;          /*!< Specifies the Slave speed mode.
                                     This parameter can be a value of @ref SPI_LL_EC_SLAVE_SPEED_MODE */
} LL_SPI_InitTypeDef;
/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Constants SPI Exported Constants
  * @{
  */
/** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines
  * @brief    Flags defines which can be used with LL_SPI_ReadReg function
  * @{
  */
#define LL_SPI_SR_RXNE                     SPI_SR_RXNE               /*!< Rx buffer not empty flag         */
#define LL_SPI_SR_TXE                      SPI_SR_TXE                /*!< Tx buffer empty flag             */
#define LL_SPI_SR_BSY                      SPI_SR_BSY                /*!< Busy flag                        */
#define LL_SPI_SR_MODF                     SPI_SR_MODF               /*!< Mode fault flag                  */
#define LL_SPI_SR_OVR                      SPI_SR_OVR                /*!< Overrun flag                     */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_IT IT Defines
  * @brief    IT defines which can be used with LL_SPI_ReadReg and  LL_SPI_WriteReg functions
  * @{
  */
#define LL_SPI_CR2_RXNEIE                  SPI_CR2_RXNEIE            /*!< Rx buffer not empty interrupt enable */
#define LL_SPI_CR2_TXEIE                   SPI_CR2_TXEIE             /*!< Tx buffer empty interrupt enable     */
#define LL_SPI_CR2_ERRIE                   SPI_CR2_ERRIE             /*!< Error interrupt enable               */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_MODE Operation Mode
  * @{
  */
#define LL_SPI_MODE_MASTER                 (SPI_CR1_MSTR | SPI_CR1_SSI)    /*!< Master configuration  */
#define LL_SPI_MODE_SLAVE                  0x00000000U                     /*!< Slave configuration   */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_PHASE Clock Phase
  * @{
  */
#define LL_SPI_PHASE_1EDGE                 0x00000000U               /*!< First clock transition is the first data capture edge  */
#define LL_SPI_PHASE_2EDGE                 (SPI_CR1_CPHA)            /*!< Second clock transition is the first data capture edge */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_POLARITY Clock Polarity
  * @{
  */
#define LL_SPI_POLARITY_LOW                0x00000000U               /*!< Clock to 0 when idle */
#define LL_SPI_POLARITY_HIGH               (SPI_CR1_CPOL)            /*!< Clock to 1 when idle */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler
  * @{
  */
#define LL_SPI_BAUDRATEPRESCALER_DIV2      0x00000000U                                    /*!< BaudRate control equal to fPCLK/2   */
#define LL_SPI_BAUDRATEPRESCALER_DIV4      (SPI_CR1_BR_0)                                 /*!< BaudRate control equal to fPCLK/4   */
#define LL_SPI_BAUDRATEPRESCALER_DIV8      (SPI_CR1_BR_1)                                 /*!< BaudRate control equal to fPCLK/8   */
#define LL_SPI_BAUDRATEPRESCALER_DIV16     (SPI_CR1_BR_1 | SPI_CR1_BR_0)                  /*!< BaudRate control equal to fPCLK/16  */
#define LL_SPI_BAUDRATEPRESCALER_DIV32     (SPI_CR1_BR_2)                                 /*!< BaudRate control equal to fPCLK/32  */
#define LL_SPI_BAUDRATEPRESCALER_DIV64     (SPI_CR1_BR_2 | SPI_CR1_BR_0)                  /*!< BaudRate control equal to fPCLK/64  */
#define LL_SPI_BAUDRATEPRESCALER_DIV128    (SPI_CR1_BR_2 | SPI_CR1_BR_1)                  /*!< BaudRate control equal to fPCLK/128 */
#define LL_SPI_BAUDRATEPRESCALER_DIV256    (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0)   /*!< BaudRate control equal to fPCLK/256 */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_BIT_ORDER Transmission Bit Order
  * @{
  */
#define LL_SPI_LSB_FIRST                   (SPI_CR1_LSBFIRST)        /*!< Data is transmitted/received with the LSB first */
#define LL_SPI_MSB_FIRST                   0x00000000U               /*!< Data is transmitted/received with the MSB first */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode
  * @{
  */
#define LL_SPI_FULL_DUPLEX                 0x00000000U                          /*!< Full-Duplex mode. Rx and Tx transfer on 2 lines */
#define LL_SPI_SIMPLEX_RX                  (SPI_CR1_RXONLY)                     /*!< Simplex Rx mode.  Rx transfer only on 1 line    */
#define LL_SPI_HALF_DUPLEX_RX              (SPI_CR1_BIDIMODE)                   /*!< Half-Duplex Rx mode. Rx transfer on 1 line      */
#define LL_SPI_HALF_DUPLEX_TX              (SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE)  /*!< Half-Duplex Tx mode. Tx transfer on 1 line      */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_NSS_MODE Slave Select Pin Mode
  * @{
  */
#define LL_SPI_NSS_SOFT                    (SPI_CR1_SSM)                     /*!< NSS managed internally. NSS pin not used and free              */
#define LL_SPI_NSS_HARD_INPUT              0x00000000U                       /*!< NSS pin used in Input. Only used in Master mode                */
#define LL_SPI_NSS_HARD_OUTPUT             (((uint32_t)SPI_CR2_SSOE << 16U)) /*!< NSS pin used in Output. Only used in Slave mode as chip select */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_DATAWIDTH Datawidth
  * @{
  */
#define LL_SPI_DATAWIDTH_8BIT               0x0              /*!< Data length for SPI transfer:  8 bits */
#define LL_SPI_DATAWIDTH_16BIT             (SPI_CR2_DS)      /*!< Data length for SPI transfer: 16 bits */
/**
  * @}
  */
#if defined(USE_FULL_LL_DRIVER)
#endif /* USE_FULL_LL_DRIVER */
/** @defgroup SPI_LL_EC_RX_FIFO_TH RX FIFO Threshold
  * @{
  */
#define LL_SPI_RX_FIFO_TH_HALF             0x00000000U               /*!< RXNE event is generated if FIFO level is greater than or equal to 1/2 (16-bit) */
#define LL_SPI_RX_FIFO_TH_QUARTER          (SPI_CR2_FRXTH)           /*!< RXNE event is generated if FIFO level is greater than or equal to 1/4 (8-bit)  */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_RX_FIFO RX FIFO Level
  * @{
  */
#define LL_SPI_RX_FIFO_EMPTY               0x00000000U                       /*!< FIFO reception empty */
#define LL_SPI_RX_FIFO_QUARTER_FULL        (SPI_SR_FRLVL_0)                  /*!< FIFO reception 1/4   */
#define LL_SPI_RX_FIFO_HALF_FULL           (SPI_SR_FRLVL_1)                  /*!< FIFO reception 1/2   */
#define LL_SPI_RX_FIFO_FULL                (SPI_SR_FRLVL_1 | SPI_SR_FRLVL_0) /*!< FIFO reception full  */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_TX_FIFO TX FIFO Level
  * @{
  */
#define LL_SPI_TX_FIFO_EMPTY               0x00000000U                       /*!< FIFO transmission empty */
#define LL_SPI_TX_FIFO_QUARTER_FULL        (SPI_SR_FTLVL_0)                  /*!< FIFO transmission 1/4   */
#define LL_SPI_TX_FIFO_HALF_FULL           (SPI_SR_FTLVL_1)                  /*!< FIFO transmission 1/2   */
#define LL_SPI_TX_FIFO_FULL                (SPI_SR_FTLVL_1 | SPI_SR_FTLVL_0) /*!< FIFO transmission full  */
#if (defined(DMA1) || defined(DMA))
/** @defgroup SPI_LL_EC_DMA_PARITY DMA Parity
  * @{
  */
#define LL_SPI_DMA_PARITY_EVEN             0x00000000U   /*!< Select DMA parity Even */
#define LL_SPI_DMA_PARITY_ODD              0x00000001U   /*!< Select DMA parity Odd  */
#endif /* DMA1 or DMA */
/**
  * @}
  */
/** @defgroup SPI_LL_EC_SLAVE_SPEED_MODE SLAVE SPEED MODE
  * @{
  */
#define LL_SPI_SLAVE_SPEED_NORMAL          0x00000000U      /* Slave normal mode */
#define LL_SPI_SLAVE_SPEED_FAST            SPI_CR2_SLVFM    /* Slave fast mode */
/**
  * @}
  */
/**
  * @}
  */
/* Exported macro ------------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Macros SPI Exported Macros
  * @{
  */
/** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros
  * @{
  */
/**
  * @brief  Write a value in SPI register
  * @param  __INSTANCE__ SPI Instance
  * @param  __REG__ Register to be written
  * @param  __VALUE__ Value to be written in the register
  * @retval None
  */
#define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
  * @brief  Read a value in SPI register
  * @param  __INSTANCE__ SPI Instance
  * @param  __REG__ Register to be read
  * @retval Register value
  */
#define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
  * @}
  */
/**
  * @}
  */
/* Exported functions --------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Functions SPI Exported Functions
  * @{
  */
/** @defgroup SPI_LL_EF_Configuration Configuration
  * @{
  */
/**
  * @brief  Enable SPI peripheral
  * @rmtoll CR1          SPE           LL_SPI_Enable
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR1, SPI_CR1_SPE);
}
/**
  * @brief  Disable SPI peripheral
  * @note   When disabling the SPI, follow the procedure described in the Reference Manual.
  * @rmtoll CR1          SPE           LL_SPI_Disable
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
}
/**
  * @brief  Check if SPI peripheral is enabled
  * @rmtoll CR1          SPE           LL_SPI_IsEnabled
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE)) ? 1UL : 0UL);
}
/**
  * @brief  Set SPI operation mode to Master or Slave
  * @note   This bit should not be changed when communication is ongoing.
  * @rmtoll CR1          MSTR          LL_SPI_SetMode\n
  *         CR1          SSI           LL_SPI_SetMode
  * @param  SPIx SPI Instance
  * @param  Mode This parameter can be one of the following values:
  *         @arg @ref LL_SPI_MODE_MASTER
  *         @arg @ref LL_SPI_MODE_SLAVE
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI, Mode);
}
/**
  * @brief  Get SPI operation mode (Master or Slave)
  * @rmtoll CR1          MSTR          LL_SPI_GetMode\n
  *         CR1          SSI           LL_SPI_GetMode
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_MODE_MASTER
  *         @arg @ref LL_SPI_MODE_SLAVE
  */
__STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI));
}
/**
  * @brief  Set clock phase
  * @note   This bit should not be changed when communication is ongoing.
  *         This bit is not used in SPI TI mode.
  * @rmtoll CR1          CPHA          LL_SPI_SetClockPhase
  * @param  SPIx SPI Instance
  * @param  ClockPhase This parameter can be one of the following values:
  *         @arg @ref LL_SPI_PHASE_1EDGE
  *         @arg @ref LL_SPI_PHASE_2EDGE
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_CPHA, ClockPhase);
}
/**
  * @brief  Get clock phase
  * @rmtoll CR1          CPHA          LL_SPI_GetClockPhase
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_PHASE_1EDGE
  *         @arg @ref LL_SPI_PHASE_2EDGE
  */
__STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPHA));
}
/**
  * @brief  Set clock polarity
  * @note   This bit should not be changed when communication is ongoing.
  *         This bit is not used in SPI TI mode.
  * @rmtoll CR1          CPOL          LL_SPI_SetClockPolarity
  * @param  SPIx SPI Instance
  * @param  ClockPolarity This parameter can be one of the following values:
  *         @arg @ref LL_SPI_POLARITY_LOW
  *         @arg @ref LL_SPI_POLARITY_HIGH
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_CPOL, ClockPolarity);
}
/**
  * @brief  Get clock polarity
  * @rmtoll CR1          CPOL          LL_SPI_GetClockPolarity
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_POLARITY_LOW
  *         @arg @ref LL_SPI_POLARITY_HIGH
  */
__STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPOL));
}
/**
  * @brief  Set baud rate prescaler
  * @note   These bits should not be changed when communication is ongoing. SPI BaudRate = fPCLK/Prescaler.
  * @rmtoll CR1          BR            LL_SPI_SetBaudRatePrescaler
  * @param  SPIx SPI Instance
  * @param  BaudRate This parameter can be one of the following values:
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t BaudRate)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_BR, BaudRate);
}
/**
  * @brief  Get baud rate prescaler
  * @rmtoll CR1          BR            LL_SPI_GetBaudRatePrescaler
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
  *         @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
  */
__STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_BR));
}
/**
  * @brief  Set transfer bit order
  * @note   This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
  * @rmtoll CR1          LSBFIRST      LL_SPI_SetTransferBitOrder
  * @param  SPIx SPI Instance
  * @param  BitOrder This parameter can be one of the following values:
  *         @arg @ref LL_SPI_LSB_FIRST
  *         @arg @ref LL_SPI_MSB_FIRST
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_LSBFIRST, BitOrder);
}
/**
  * @brief  Get transfer bit order
  * @rmtoll CR1          LSBFIRST      LL_SPI_GetTransferBitOrder
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_LSB_FIRST
  *         @arg @ref LL_SPI_MSB_FIRST
  */
__STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_LSBFIRST));
}
/**
  * @brief  Set transfer direction mode
  * @note   For Half-Duplex mode, Rx Direction is set by default.
  *         In master mode, the MOSI pin is used and in slave mode, the MISO pin is used for Half-Duplex.
  * @rmtoll CR1          RXONLY        LL_SPI_SetTransferDirection\n
  *         CR1          BIDIMODE      LL_SPI_SetTransferDirection\n
  *         CR1          BIDIOE        LL_SPI_SetTransferDirection
  * @param  SPIx SPI Instance
  * @param  TransferDirection This parameter can be one of the following values:
  *         @arg @ref LL_SPI_FULL_DUPLEX
  *         @arg @ref LL_SPI_SIMPLEX_RX
  *         @arg @ref LL_SPI_HALF_DUPLEX_RX
  *         @arg @ref LL_SPI_HALF_DUPLEX_TX
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE, TransferDirection);
}
/**
  * @brief  Get transfer direction mode
  * @rmtoll CR1          RXONLY        LL_SPI_GetTransferDirection\n
  *         CR1          BIDIMODE      LL_SPI_GetTransferDirection\n
  *         CR1          BIDIOE        LL_SPI_GetTransferDirection
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_FULL_DUPLEX
  *         @arg @ref LL_SPI_SIMPLEX_RX
  *         @arg @ref LL_SPI_HALF_DUPLEX_RX
  *         @arg @ref LL_SPI_HALF_DUPLEX_TX
  */
__STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE));
}
/**
  * @brief  Set frame data width
  * @rmtoll CR2          DS            LL_SPI_SetDataWidth
  * @param  SPIx SPI Instance
  * @param  DataWidth This parameter can be one of the following values:
  *         @arg @ref LL_SPI_DATAWIDTH_8BIT
  *         @arg @ref LL_SPI_DATAWIDTH_16BIT
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth)
{
  MODIFY_REG(SPIx->CR2, SPI_CR2_DS, DataWidth);
}
/**
  * @brief  Get frame data width
  * @rmtoll CR2          DS            LL_SPI_GetDataWidth
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_DATAWIDTH_8BIT
  *         @arg @ref LL_SPI_DATAWIDTH_16BIT
  */
__STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_DS));
}
/**
  * @brief  Set threshold of RXFIFO that triggers an RXNE event
  * @rmtoll CR2          FRXTH         LL_SPI_SetRxFIFOThreshold
  * @param  SPIx SPI Instance
  * @param  Threshold This parameter can be one of the following values:
  *         @arg @ref LL_SPI_RX_FIFO_TH_HALF
  *         @arg @ref LL_SPI_RX_FIFO_TH_QUARTER
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetRxFIFOThreshold(SPI_TypeDef *SPIx, uint32_t Threshold)
{
  MODIFY_REG(SPIx->CR2, SPI_CR2_FRXTH, Threshold);
}
/**
  * @brief  Get threshold of RXFIFO that triggers an RXNE event
  * @rmtoll CR2          FRXTH         LL_SPI_GetRxFIFOThreshold
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_RX_FIFO_TH_HALF
  *         @arg @ref LL_SPI_RX_FIFO_TH_QUARTER
  */
__STATIC_INLINE uint32_t LL_SPI_GetRxFIFOThreshold(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRXTH));
}
/**
  * @}
  */
/** @defgroup SPI_LL_EF_NSS_Management Slave Select Pin Management
  * @{
  */
/**
  * @brief  Set NSS mode
  * @rmtoll CR1          SSM           LL_SPI_SetNSSMode\n
  * @rmtoll CR2          SSOE          LL_SPI_SetNSSMode
  * @param  SPIx SPI Instance
  * @param  NSS This parameter can be one of the following values:
  *         @arg @ref LL_SPI_NSS_SOFT
  *         @arg @ref LL_SPI_NSS_HARD_INPUT
  *         @arg @ref LL_SPI_NSS_HARD_OUTPUT
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS)
{
  MODIFY_REG(SPIx->CR1, SPI_CR1_SSM,  NSS);
  MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, ((uint32_t)(NSS >> 16U)));
}
/**
  * @brief  Get NSS mode
  * @rmtoll CR1          SSM           LL_SPI_GetNSSMode\n
  * @rmtoll CR2          SSOE          LL_SPI_GetNSSMode
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_NSS_SOFT
  *         @arg @ref LL_SPI_NSS_HARD_INPUT
  *         @arg @ref LL_SPI_NSS_HARD_OUTPUT
  */
__STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx)
{
  uint32_t Ssm  = (READ_BIT(SPIx->CR1, SPI_CR1_SSM));
  uint32_t Ssoe = (READ_BIT(SPIx->CR2,  SPI_CR2_SSOE) << 16U);
  return (Ssm | Ssoe);
}
/**
  * @}
  */
/** @defgroup SPI_LL_EF_FLAG_Management FLAG Management
  * @{
  */
/**
  * @brief  Check if Rx buffer is not empty
  * @rmtoll SR           RXNE          LL_SPI_IsActiveFlag_RXNE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->SR, SPI_SR_RXNE) == (SPI_SR_RXNE)) ? 1UL : 0UL);
}
/**
  * @brief  Check if Tx buffer is empty
  * @rmtoll SR           TXE           LL_SPI_IsActiveFlag_TXE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->SR, SPI_SR_TXE) == (SPI_SR_TXE)) ? 1UL : 0UL);
}
/**
  * @brief  Get mode fault error flag
  * @rmtoll SR           MODF          LL_SPI_IsActiveFlag_MODF
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF)) ? 1UL : 0UL);
}
/**
  * @brief  Get overrun error flag
  * @rmtoll SR           OVR           LL_SPI_IsActiveFlag_OVR
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR)) ? 1UL : 0UL);
}
/**
  * @brief  Get busy flag
  * @note   The BSY flag is cleared under any one of the following conditions:
  * -When the SPI is correctly disabled
  * -When a fault is detected in Master mode (MODF bit set to 1)
  * -In Master mode, when it finishes a data transmission and no new data is ready to be
  * sent
  * -In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between
  * each data transfer.
  * @rmtoll SR           BSY           LL_SPI_IsActiveFlag_BSY
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->SR, SPI_SR_BSY) == (SPI_SR_BSY)) ? 1UL : 0UL);
}
/**
  * @brief  Get FIFO reception Level
  * @rmtoll SR           FRLVL         LL_SPI_GetRxFIFOLevel
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_RX_FIFO_EMPTY
  *         @arg @ref LL_SPI_RX_FIFO_QUARTER_FULL
  *         @arg @ref LL_SPI_RX_FIFO_HALF_FULL
  *         @arg @ref LL_SPI_RX_FIFO_FULL
  */
__STATIC_INLINE uint32_t LL_SPI_GetRxFIFOLevel(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_FRLVL));
}
/**
  * @brief  Get FIFO Transmission Level
  * @rmtoll SR           FTLVL         LL_SPI_GetTxFIFOLevel
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_TX_FIFO_EMPTY
  *         @arg @ref LL_SPI_TX_FIFO_QUARTER_FULL
  *         @arg @ref LL_SPI_TX_FIFO_HALF_FULL
  *         @arg @ref LL_SPI_TX_FIFO_FULL
  */
__STATIC_INLINE uint32_t LL_SPI_GetTxFIFOLevel(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_FTLVL));
}
/**
  * @brief  Clear mode fault error flag
  * @note   Clearing this flag is done by a read access to the SPIx_SR
  *         register followed by a write access to the SPIx_CR1 register
  * @rmtoll SR           MODF          LL_SPI_ClearFlag_MODF
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx)
{
  __IO uint32_t tmpreg_sr;
  tmpreg_sr = SPIx->SR;
  (void) tmpreg_sr;
  CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
}
/**
  * @brief  Clear overrun error flag
  * @note   Clearing this flag is done by a read access to the SPIx_DR
  *         register followed by a read access to the SPIx_SR register
  * @rmtoll SR           OVR           LL_SPI_ClearFlag_OVR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx)
{
  __IO uint32_t tmpreg;
  tmpreg = SPIx->DR;
  (void) tmpreg;
  tmpreg = SPIx->SR;
  (void) tmpreg;
}
/**
  * @}
  */
/** @defgroup SPI_LL_EF_IT_Management Interrupt Management
  * @{
  */
/**
  * @brief  Enable error interrupt
  * @note   This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
  * @rmtoll CR2          ERRIE         LL_SPI_EnableIT_ERR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableIT_ERR(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR2, SPI_CR2_ERRIE);
}
/**
  * @brief  Enable Rx buffer not empty interrupt
  * @rmtoll CR2          RXNEIE        LL_SPI_EnableIT_RXNE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableIT_RXNE(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
}
/**
  * @brief  Enable Tx buffer empty interrupt
  * @rmtoll CR2          TXEIE         LL_SPI_EnableIT_TXE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableIT_TXE(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR2, SPI_CR2_TXEIE);
}
/**
  * @brief  Disable error interrupt
  * @note   This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
  * @rmtoll CR2          ERRIE         LL_SPI_DisableIT_ERR
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableIT_ERR(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR2, SPI_CR2_ERRIE);
}
/**
  * @brief  Disable Rx buffer not empty interrupt
  * @rmtoll CR2          RXNEIE        LL_SPI_DisableIT_RXNE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableIT_RXNE(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
}
/**
  * @brief  Disable Tx buffer empty interrupt
  * @rmtoll CR2          TXEIE         LL_SPI_DisableIT_TXE
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableIT_TXE(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR2, SPI_CR2_TXEIE);
}
/**
  * @brief  Check if error interrupt is enabled
  * @rmtoll CR2          ERRIE         LL_SPI_IsEnabledIT_ERR
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->CR2, SPI_CR2_ERRIE) == (SPI_CR2_ERRIE)) ? 1UL : 0UL);
}
/**
  * @brief  Check if Rx buffer not empty interrupt is enabled
  * @rmtoll CR2          RXNEIE        LL_SPI_IsEnabledIT_RXNE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->CR2, SPI_CR2_RXNEIE) == (SPI_CR2_RXNEIE)) ? 1UL : 0UL);
}
/**
  * @brief  Check if Tx buffer empty interrupt
  * @rmtoll CR2          TXEIE         LL_SPI_IsEnabledIT_TXE
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->CR2, SPI_CR2_TXEIE) == (SPI_CR2_TXEIE)) ? 1UL : 0UL);
}
/**
  * @}
  */
#if (defined(DMA1) || defined(DMA))
/** @defgroup SPI_LL_EF_DMA_Management DMA Management
  * @{
  */
/**
  * @brief  Enable DMA Rx
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll CR2          RXDMAEN       LL_SPI_EnableDMAReq_RX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
}
/**
  * @brief  Disable DMA Rx
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll CR2          RXDMAEN       LL_SPI_DisableDMAReq_RX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
}
/**
  * @brief  Check if DMA Rx is enabled
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll CR2          RXDMAEN       LL_SPI_IsEnabledDMAReq_RX
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->CR2, SPI_CR2_RXDMAEN) == (SPI_CR2_RXDMAEN)) ? 1UL : 0UL);
}
/**
  * @brief  Enable DMA Tx
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll CR2          TXDMAEN       LL_SPI_EnableDMAReq_TX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx)
{
  SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
}
/**
  * @brief  Disable DMA Tx
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll CR2          TXDMAEN       LL_SPI_DisableDMAReq_TX
  * @param  SPIx SPI Instance
  * @retval None
  */
__STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx)
{
  CLEAR_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
}
/**
  * @brief  Check if DMA Tx is enabled
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll CR2          TXDMAEN       LL_SPI_IsEnabledDMAReq_TX
  * @param  SPIx SPI Instance
  * @retval State of bit (1 or 0).
  */
__STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
{
  return ((READ_BIT(SPIx->CR2, SPI_CR2_TXDMAEN) == (SPI_CR2_TXDMAEN)) ? 1UL : 0UL);
}
/**
  * @brief  Set parity of  Last DMA reception
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll CR2          LDMARX        LL_SPI_SetDMAParity_RX
  * @param  SPIx SPI Instance
  * @param  Parity This parameter can be one of the following values:
  *         @arg @ref LL_SPI_DMA_PARITY_ODD
  *         @arg @ref LL_SPI_DMA_PARITY_EVEN
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetDMAParity_RX(SPI_TypeDef *SPIx, uint32_t Parity)
{
  MODIFY_REG(SPIx->CR2, SPI_CR2_LDMA_RX, (Parity << SPI_CR2_LDMA_RX_Pos));
}
/**
  * @brief  Get parity configuration for  Last DMA reception
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll CR2          LDMARX        LL_SPI_GetDMAParity_RX
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_DMA_PARITY_ODD
  *         @arg @ref LL_SPI_DMA_PARITY_EVEN
  */
__STATIC_INLINE uint32_t LL_SPI_GetDMAParity_RX(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_LDMA_RX) >> SPI_CR2_LDMA_RX_Pos);
}
/**
  * @brief  Set parity of  Last DMA transmission
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll CR2          LDMATX        LL_SPI_SetDMAParity_TX
  * @param  SPIx SPI Instance
  * @param  Parity This parameter can be one of the following values:
  *         @arg @ref LL_SPI_DMA_PARITY_ODD
  *         @arg @ref LL_SPI_DMA_PARITY_EVEN
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetDMAParity_TX(SPI_TypeDef *SPIx, uint32_t Parity)
{
  MODIFY_REG(SPIx->CR2, SPI_CR2_LDMA_TX, (Parity << SPI_CR2_LDMA_TX_Pos));
}
/**
  * @brief  Get parity configuration for Last DMA transmission
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll CR2          LDMATX        LL_SPI_GetDMAParity_TX
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_DMA_PARITY_ODD
  *         @arg @ref LL_SPI_DMA_PARITY_EVEN
  */
__STATIC_INLINE uint32_t LL_SPI_GetDMAParity_TX(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_LDMA_TX) >> SPI_CR2_LDMA_TX_Pos);
}
/**
  * @brief  Get the data register address used for DMA transfer
  * @note   Depending on devices and packages, DMA may not be available.
  *         Refer to device datasheet for DMA availability.
  * @rmtoll DR           DR            LL_SPI_DMA_GetRegAddr
  * @param  SPIx SPI Instance
  * @retval Address of data register
  */
__STATIC_INLINE uint32_t LL_SPI_DMA_GetRegAddr(SPI_TypeDef *SPIx)
{
  return (uint32_t) & (SPIx->DR);
}
#endif /* DMA1 or DMA */
/**
  * @}
  */
/** @defgroup SPI_LL_EF_DATA_Management DATA Management
  * @{
  */
/**
  * @brief  Read 8-Bits in the data register
  * @rmtoll DR           DR            LL_SPI_ReceiveData8
  * @param  SPIx SPI Instance
  * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFF
  */
__STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx)
{
  return (*((__IO uint8_t *)&SPIx->DR));
}
/**
  * @brief  Read 16-Bits in the data register
  * @rmtoll DR           DR            LL_SPI_ReceiveData16
  * @param  SPIx SPI Instance
  * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFFFF
  */
__STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx)
{
  return (uint16_t)(READ_REG(SPIx->DR));
}
/**
  * @brief  Write 8-Bits in the data register
  * @rmtoll DR           DR            LL_SPI_TransmitData8
  * @param  SPIx SPI Instance
  * @param  TxData Value between Min_Data=0x00 and Max_Data=0xFF
  * @retval None
  */
__STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData)
{
#if defined (__GNUC__)
  __IO uint8_t *spidr = ((__IO uint8_t *)&SPIx->DR);
  *spidr = TxData;
#else
  *((__IO uint8_t *)&SPIx->DR) = TxData;
#endif /* __GNUC__ */
}
/**
  * @brief  Write 16-Bits in the data register
  * @rmtoll DR           DR            LL_SPI_TransmitData16
  * @param  SPIx SPI Instance
  * @param  TxData Value between Min_Data=0x00 and Max_Data=0xFFFF
  * @retval None
  */
__STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
{
#if defined (__GNUC__)
  __IO uint16_t *spidr = ((__IO uint16_t *)&SPIx->DR);
  *spidr = TxData;
#else
  SPIx->DR = TxData;
#endif /* __GNUC__ */
}
/**
  * @brief  Set Slave Speed Mode
  * @rmtoll CR2          SLVFM        LL_SPI_SetSlaveSpeedMode
  * @param  SPIx SPI Instance
  * @param  SlaveSpeedMode This parameter can be one of the following values:
  *         @arg @ref LL_SPI_SLAVE_SPEED_NORMAL
  *         @arg @ref LL_SPI_SLAVE_SPEED_FAST
  * @retval None
  */
__STATIC_INLINE void LL_SPI_SetSlaveSpeedMode(SPI_TypeDef *SPIx, uint32_t SlaveSpeedMode)
{
  MODIFY_REG(SPIx->CR2, SPI_CR2_SLVFM, SlaveSpeedMode);
}
/**
  * @brief  Get Slave Speed Mode
  * @rmtoll CR2          SLVFM        LL_SPI_GetSlaveSpeedMode
  * @param  SPIx SPI Instance
  * @retval Returned value can be one of the following values:
  *         @arg @ref LL_SPI_SLAVE_SPEED_NORMAL
  *         @arg @ref LL_SPI_SLAVE_SPEED_FAST
  */
__STATIC_INLINE uint32_t LL_SPI_GetSlaveSpeedMode(SPI_TypeDef *SPIx)
{
  return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_SLVFM));
}
/**
  * @}
  */
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions
  * @{
  */
ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx);
ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct);
void        LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct);
/**
  * @}
  */
#endif /* USE_FULL_LL_DRIVER */
/**
  * @}
  */
/**
  * @}
  */
#endif /* defined (SPI1) || defined (SPI2) */
/**
  * @}
  */
#ifdef __cplusplus
}
#endif
#endif /* PY32F0xx_LL_SPI_H */
/************************ (C) COPYRIGHT Puya *****END OF FILE****/