/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_mat_mult_q7.c
 * Description:  Q15 matrix multiplication
 *
 * $Date:        23 April 2021
 *
 * $Revision:    V1.9.0
 *
 * Target Processor: Cortex-M and Cortex-A cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "dsp/matrix_functions.h"
/**
  @ingroup groupMatrix
 */
/**
  @addtogroup MatrixMult
  @{
 */
/**
 * @brief Q7 matrix multiplication
 * @param[in]       *pSrcA points to the first input matrix structure
 * @param[in]       *pSrcB points to the second input matrix structure
 * @param[out]      *pDst points to output matrix structure
 * @param[in]       *pState points to the array for storing intermediate results (Unused in some versions)
 * @return          The function returns either
 * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
 *
 * @details
 * Scaling and Overflow Behavior:
 *
 * \par
 * The function is implemented using a 32-bit internal accumulator saturated to 1.7 format.
 *
 *
 */
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
__STATIC_FORCEINLINE arm_status arm_mat_mult_q7_2x2_mve(
    const arm_matrix_instance_q7 * pSrcA,
    const arm_matrix_instance_q7 * pSrcB,
    arm_matrix_instance_q7 * pDst)
{
    const uint32_t MATRIX_DIM = 2;
    q7_t const *pInB = (q7_t const *)pSrcB->pData;  /* input data matrix pointer B */
    q7_t       *pInA = pSrcA->pData;  /* input data matrix pointer A */
    q7_t       *pOut = pDst->pData;   /* output data matrix pointer */
    uint8x16_t vecColBOffs;
    q7_t       *pInA0 = pInA;
    q7_t       *pInA1 = pInA0 + MATRIX_DIM;
    q31_t       acc0, acc1;
    q7x16_t    vecB, vecA0, vecA1;
    mve_pred16_t p0 = vctp8q(MATRIX_DIM);
    vecColBOffs = vidupq_u8((uint32_t)0, 2); /* MATRIX_DIM */
    pInB = pSrcB->pData;
    vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
    vecA0 = vldrbq_s8(pInA0);
    vecA1 = vldrbq_s8(pInA1);
    acc0 = vmladavq_s8(vecA0, vecB);
    acc1 = vmladavq_s8(vecA1, vecB);
    pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
    pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
    pOut++;
    /* move to next B column */
    pInB = pInB + 1;
    vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
    acc0 = vmladavq_s8(vecA0, vecB);
    acc1 = vmladavq_s8(vecA1, vecB);
    pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
    pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
    /*
     * Return to application
     */
    return (ARM_MATH_SUCCESS);
}
__STATIC_FORCEINLINE arm_status arm_mat_mult_q7_3x3_mve(
    const arm_matrix_instance_q7 * pSrcA,
    const arm_matrix_instance_q7 * pSrcB,
    arm_matrix_instance_q7 * pDst)
{
    const uint8_t  MATRIX_DIM = 3;
    q7_t const     *pInB = (q7_t const *)pSrcB->pData;  /* input data matrix pointer B */
    q7_t           *pInA = pSrcA->pData;  /* input data matrix pointer A */
    q7_t           *pOut = pDst->pData;   /* output data matrix pointer */
    uint8x16_t     vecColBOffs;
    q7_t           *pInA0 = pInA;
    q7_t           *pInA1 = pInA0 + MATRIX_DIM;
    q7_t           *pInA2 = pInA1 + MATRIX_DIM;
    q31_t           acc0, acc1, acc2;
    q7x16_t        vecB, vecA0, vecA1, vecA2;
    mve_pred16_t    p0 = vctp8q(MATRIX_DIM);
    vecColBOffs = vidupq_u8((uint32_t)0, 1);
    vecColBOffs = vecColBOffs * MATRIX_DIM;
    pInB = pSrcB->pData;
    vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
    vecA0 = vldrbq_s8(pInA0);
    vecA1 = vldrbq_s8(pInA1);
    vecA2 = vldrbq_s8(pInA2);
    acc0 = vmladavq_s8(vecA0, vecB);
    acc1 = vmladavq_s8(vecA1, vecB);
    acc2 = vmladavq_s8(vecA2, vecB);
    pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
    pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
    pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
    pOut++;
    /* move to next B column */
    pInB = pInB + 1;
    vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
    acc0 = vmladavq_s8(vecA0, vecB);
    acc1 = vmladavq_s8(vecA1, vecB);
    acc2 = vmladavq_s8(vecA2, vecB);
    pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
    pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
    pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
    pOut++;
    /* move to next B column */
    pInB = pInB + 1;
    vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
    acc0 = vmladavq_s8(vecA0, vecB);
    acc1 = vmladavq_s8(vecA1, vecB);
    acc2 = vmladavq_s8(vecA2, vecB);
    pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
    pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
    pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
    /*
     * Return to application
     */
    return (ARM_MATH_SUCCESS);
}
__STATIC_FORCEINLINE arm_status arm_mat_mult_q7_4x4_mve(
    const arm_matrix_instance_q7 * pSrcA,
    const arm_matrix_instance_q7 * pSrcB,
    arm_matrix_instance_q7 * pDst)
{
    const uint32_t MATRIX_DIM = 4;
    q7_t const *pInB = (q7_t const *)pSrcB->pData;  /* input data matrix pointer B */
    q7_t       *pInA = pSrcA->pData;  /* input data matrix pointer A */
    q7_t       *pOut = pDst->pData;   /* output data matrix pointer */
    uint8x16_t vecColBOffs;
    q7_t       *pInA0 = pInA;
    q7_t       *pInA1 = pInA0 + MATRIX_DIM;
    q7_t       *pInA2 = pInA1 + MATRIX_DIM;
    q7_t       *pInA3 = pInA2 + MATRIX_DIM;
    q31_t       acc0, acc1, acc2, acc3;
    q7x16_t    vecB, vecA0, vecA1, vecA2, vecA3;
    mve_pred16_t p0 = vctp8q(MATRIX_DIM);
    vecColBOffs = vidupq_u8((uint32_t)0, 4);
    pInB = pSrcB->pData;
    vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
    vecA0 = vldrbq_s8(pInA0);
    vecA1 = vldrbq_s8(pInA1);
    vecA2 = vldrbq_s8(pInA2);
    vecA3 = vldrbq_s8(pInA3);
    acc0 = vmladavq_s8(vecA0, vecB);
    acc1 = vmladavq_s8(vecA1, vecB);
    acc2 = vmladavq_s8(vecA2, vecB);
    acc3 = vmladavq_s8(vecA3, vecB);
    pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
    pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
    pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
    pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8);
    pOut++;
    /* move to next B column */
    pInB = pInB + 1;
    vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
    acc0 = vmladavq_s8(vecA0, vecB);
    acc1 = vmladavq_s8(vecA1, vecB);
    acc2 = vmladavq_s8(vecA2, vecB);
    acc3 = vmladavq_s8(vecA3, vecB);
    pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
    pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
    pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
    pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8);
    pOut++;
    /* move to next B column */
    pInB = pInB + 1;
    vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
    acc0 = vmladavq_s8(vecA0, vecB);
    acc1 = vmladavq_s8(vecA1, vecB);
    acc2 = vmladavq_s8(vecA2, vecB);
    acc3 = vmladavq_s8(vecA3, vecB);
    pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
    pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
    pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
    pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8);
    pOut++;
    /* move to next B column */
    pInB = pInB + 1;
    vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
    acc0 = vmladavq_s8(vecA0, vecB);
    acc1 = vmladavq_s8(vecA1, vecB);
    acc2 = vmladavq_s8(vecA2, vecB);
    acc3 = vmladavq_s8(vecA3, vecB);
    pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
    pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
    pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
    pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8);
    /*
     * Return to application
     */
    return (ARM_MATH_SUCCESS);
}
arm_status arm_mat_mult_q7(
    const arm_matrix_instance_q7 * pSrcA,
    const arm_matrix_instance_q7 * pSrcB,
    arm_matrix_instance_q7 * pDst,
    q7_t * pState)
{
    q7_t    *pInA = pSrcA->pData;  /* input data matrix pointer A of Q7 type */
    q7_t    *pInB = pSrcB->pData;  /* input data matrix pointer B of Q7 type */
    q7_t    *pInA2;
    q7_t    *pInB2;
    q7_t    *px;               /* Temporary output data matrix pointer */
    q7_t    *px2;              /* Temporary output data matrix pointer */
    uint32_t  numRowsA = pSrcA->numRows;    /* number of rows of input matrix A    */
    uint32_t  numColsB = pSrcB->numCols;    /* number of columns of input matrix B */
    uint32_t  numColsA = pSrcA->numCols;    /* number of columns of input matrix A */
    uint32_t  numRowsB = pSrcB->numRows;    /* number of rows of input matrix A    */
    uint32_t  col, i = 0u, j, row = numRowsB;   /* loop counters */
    q7_t    *pSrcBT = pState;   /* input data matrix pointer for transpose */
    uint32_t  blkCnt;           /* loop counters */
    arm_status status;                            /* status of matrix multiplication */
    arm_matrix_instance_q7 BT;
   #ifdef ARM_MATH_MATRIX_CHECK
  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
      (pSrcA->numRows != pDst->numRows)  ||
      (pSrcB->numCols != pDst->numCols)    )
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
  {
    /* small squared matrix specialized routines */
    if(numRowsA == numColsB && numColsB == numColsA) {
        if(numRowsA == 2)
            return arm_mat_mult_q7_2x2_mve(pSrcA, pSrcB, pDst);
        else if(numRowsA == 3)
            return arm_mat_mult_q7_3x3_mve(pSrcA, pSrcB, pDst);
        else if (numRowsA == 4)
            return arm_mat_mult_q7_4x4_mve(pSrcA, pSrcB, pDst);
    }
    /*
     * Matrix transpose
     */
    BT.numRows = numColsB;
    BT.numCols = numRowsB;
    BT.pData = pSrcBT;
    arm_mat_trans_q7(pSrcB, &BT);
    /*
     * Reset the variables for the usage in the following multiplication process
     */
    i = 0;
    row = numRowsA >> 1;
    px = pDst->pData;
    px2 = px + numColsB;
    /*
     * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
     */
    /*
     * row loop
     */
    while (row > 0u)
    {
        /*
         * For every row wise process, the column loop counter is to be initiated
         */
        col = numColsB >> 1;
        /*
         * For every row wise process, the pIn2 pointer is set
         * to the starting address of the transposed pSrcB data
         */
        pInB = pSrcBT;
        pInB2 = pInB + numRowsB;
        j = 0;
        /*
         * column loop
         */
        while (col > 0u)
        {
            q7_t const     *pSrcAVec, *pSrcBVec, *pSrcA2Vec, *pSrcB2Vec;
            q7x16_t        vecA, vecA2, vecB, vecB2;
            q31_t           acc0, acc1, acc2, acc3;
            /*
             * Initiate the pointer pIn1 to point to the starting address of the column being processed
             */
            pInA = pSrcA->pData + i;
            pInA2 = pInA + numColsA;
            pInB = pSrcBT + j;
            pInB2 = pInB + numRowsB;
            pSrcAVec = (q7_t const *) pInA;
            pSrcA2Vec = (q7_t const *)pInA2;
            pSrcBVec = (q7_t const *) pInB;
            pSrcB2Vec = (q7_t const *)pInB2;
            acc0 = 0L;
            acc1 = 0L;
            acc2 = 0L;
            acc3 = 0L;
            vecA = vld1q(pSrcAVec);  
            pSrcAVec += 16;
            blkCnt = numColsA >> 4;
            while (blkCnt > 0U)
            {
                vecB = vld1q(pSrcBVec);  
                pSrcBVec += 16;
                acc0 = vmladavaq_s8(acc0, vecA, vecB);
                vecA2 = vld1q(pSrcA2Vec);  
                pSrcA2Vec += 16;
                acc1 = vmladavaq_s8(acc1, vecA2, vecB);
                vecB2 = vld1q(pSrcB2Vec);  
                pSrcB2Vec += 16;
                acc2 = vmladavaq_s8(acc2, vecA, vecB2);
                vecA = vld1q(pSrcAVec);  
                pSrcAVec += 16;
                acc3 = vmladavaq_s8(acc3, vecA2, vecB2);
                blkCnt--;
            }
            /*
             * tail
             * (will be merged thru tail predication)
             */
            blkCnt = numColsA & 0xF;
            if (blkCnt > 0U)
            {
                mve_pred16_t p0 = vctp8q(blkCnt);
                vecB = vld1q(pSrcBVec);
                acc0 = vmladavaq_p_s8(acc0, vecA, vecB, p0);
                vecA2 = vld1q(pSrcA2Vec);
                acc1 = vmladavaq_p_s8(acc1, vecA2, vecB, p0);
                vecB2 = vld1q(pSrcB2Vec);
                acc2 = vmladavaq_p_s8(acc2, vecA, vecB2, p0);
                vecA = vld1q(pSrcAVec);
                acc3 = vmladavaq_p_s8(acc3, vecA2, vecB2, p0);
            }
            *px++ = (q7_t) __SSAT(acc0 >> 7, 8);
            *px++ = (q7_t) __SSAT(acc2 >> 7, 8);
            *px2++ = (q7_t) __SSAT(acc1 >> 7, 8);
            *px2++ = (q7_t) __SSAT(acc3 >> 7, 8);
            j += numRowsB * 2;
            /*
             * Decrement the column loop counter
             */
            col--;
        }
        i = i + numColsA * 2;
        px = px2 + (numColsB & 1u);
        px2 = px + numColsB;
        /*
         * Decrement the row loop counter
         */
        row--;
    }
    /*
     * Compute remaining row and/or column below
     */
    if (numColsB & 1u)
    {
        row = numRowsA & (~0x1);    //avoid redundant computation
        px = pDst->pData + numColsB - 1;
        i = 0;
        /*
         * row loop
         */
        while (row > 0)
        {
            q7_t const   *pSrcAVec, *pSrcBVec;
            q7x16_t       vecA, vecB;
            q63_t           acc0;
            /*
             * point to last column in matrix B
             */
            pInB = pSrcBT + numRowsB * (numColsB - 1);
            pInA = pSrcA->pData + i;
            pSrcAVec = (q7_t const *) pInA;
            pSrcBVec = (q7_t const *) pInB;
            acc0 = 0LL;
            blkCnt = (numColsA) >> 4;
            while (blkCnt > 0U)
            {
                vecA = vld1q(pSrcAVec);  
                pSrcAVec += 16;
                vecB = vld1q(pSrcBVec);  
                pSrcBVec += 16;
                acc0 = vmladavaq_s8(acc0, vecA, vecB);
                blkCnt--;
            }
            /*
             * tail
             * (will be merged thru tail predication)
             */
            blkCnt = numColsA & 0xF;
            if (blkCnt > 0U)
            {
                mve_pred16_t p0 = vctp8q(blkCnt);
                vecA = vld1q(pSrcAVec);
                vecB = vld1q(pSrcBVec);
                acc0 = vmladavaq_p_s8(acc0, vecA, vecB, p0);
            }
            *px = (q7_t) __SSAT(acc0 >> 7, 8);
            px += numColsB;
            i += numColsA;
            /*
             * Decrement the row loop counter
             */
            row--;
        }
    }
    if (numRowsA & 1u)
    {
        col = numColsB;
        i = 0u;
        /*
         * point to last row in output matrix
         */
        px = pDst->pData + (numColsB) * (numRowsA - 1);
        /*
         * col loop
         */
        while (col > 0)
        {
            q7_t const    *pSrcAVec, *pSrcBVec;
            q7x16_t       vecA, vecB;
            q63_t           acc0;
            /*
             * point to last row in matrix A
             */
            pInA = pSrcA->pData + (numRowsA - 1) * numColsA;
            pInB = pSrcBT + i;
            /*
             * Set the variable sum, that acts as accumulator, to zero
             */
            pSrcAVec = (q7_t const *) pInA;
            pSrcBVec = (q7_t const *) pInB;
            acc0 = 0LL;
            blkCnt = (numColsA) >> 4;
            while (blkCnt > 0U)
            {
                vecA = vld1q(pSrcAVec); 
                pSrcAVec += 16;
                vecB = vld1q(pSrcBVec); 
                pSrcBVec += 16;
                acc0 = vmladavaq_s8(acc0, vecA, vecB);
                blkCnt--;
            }
            /*
             * tail
             * (will be merged thru tail predication)
             */
            blkCnt = numColsA & 0xF;
            if (blkCnt > 0U)
            {
                mve_pred16_t p0 = vctp8q(blkCnt);
                vecA = vld1q(pSrcAVec);
                vecB = vld1q(pSrcBVec);
                acc0 = vmladavaq_p_s8(acc0, vecA, vecB, p0);
            }
            *px++ = (q7_t) __SSAT(acc0 >> 7, 8);
            i += numColsA;
            /*
             * Decrement the col loop counter
             */
            col--;
        }
    }
    /*
     * Return to application
     */
     status = ARM_MATH_SUCCESS;
    }
    return(status);
}
#else
arm_status arm_mat_mult_q7(const arm_matrix_instance_q7 *pSrcA, const arm_matrix_instance_q7 *pSrcB, arm_matrix_instance_q7 *pDst, q7_t *pState)
{
    q31_t sum; /* accumulator */
    q7_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
    q7_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
    q7_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q7 type */
    q7_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q7 type */
    q7_t *pOut = pDst->pData;                     /* output data matrix pointer */
    q7_t *px;                                     /* Temporary output data matrix pointer */
    uint16_t numColsB = pSrcB->numCols;           /* number of columns of input matrix B */
    uint16_t numColsA = pSrcA->numCols;           /* number of columns of input matrix A */
    uint16_t numRowsA = pSrcA->numRows;           /* number of rows of input matrix A    */
    uint16_t col, i = 0U, row = numRowsA, colCnt; /* loop counters */
    arm_status status;                            /* status of matrix multiplication */
    (void)pState;
#ifdef ARM_MATH_MATRIX_CHECK
  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
      (pSrcA->numRows != pDst->numRows)  ||
      (pSrcB->numCols != pDst->numCols)    )
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
    {
        /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
        /* row loop */
        do {
            /* Output pointer is set to starting address of the row being processed */
            px = pOut + i;
            /* For every row wise process, the column loop counter is to be initiated */
            col = numColsB;
            /* For every row wise process, the pIn2 pointer is set
             ** to the starting address of the pSrcB data */
            pIn2 = pSrcB->pData;
            /* column loop */
            do {
                /* Set the variable sum, that acts as accumulator, to zero */
                sum = 0;
                /* Initiate the pointer pIn1 to point to the starting address of pSrcA */
                pIn1 = pInA;
                /* Matrix A columns number of MAC operations are to be performed */
                colCnt = numColsA;
                /* matrix multiplication */
                while (colCnt > 0U) {
                    /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
                    /* Perform the multiply-accumulates */
                    sum += (q31_t)*pIn1++ * *pIn2;
                    pIn2 += numColsB;
                    /* Decrement the loop counter */
                    colCnt--;
                }
                /* Convert the result from 34.30 to 1.15 format and store the saturated value in destination buffer */
                /* Saturate and store the result in the destination buffer */
                *px++ = (q7_t)__SSAT((sum >> 7), 8);
                /* Decrement the column loop counter */
                col--;
                /* Update the pointer pIn2 to point to the  starting address of the next column */
                pIn2 = pInB + (numColsB - col);
            } while (col > 0U);
            /* Update the pointer pSrcA to point to the  starting address of the next row */
            i = i + numColsB;
            pInA = pInA + numColsA;
            /* Decrement the row loop counter */
            row--;
        } while (row > 0U);
        /* set status as ARM_MATH_SUCCESS */
        status = ARM_MATH_SUCCESS;
    }
    /* Return to application */
    return (status);
}
#endif /* defined(ARM_MATH_MVEI) */
/**
  @} end of MatrixMult group
 */