mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-31 09:52:05 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			274 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			274 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_cmplx_mag_f32.c
 | |
|  * Description:  Floating-point complex magnitude
 | |
|  *
 | |
|  * $Date:        23 April 2021
 | |
|  * $Revision:    V1.9.0
 | |
|  *
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "dsp/complex_math_functions.h"
 | |
| 
 | |
| /**
 | |
|   @ingroup groupCmplxMath
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @defgroup cmplx_mag Complex Magnitude
 | |
| 
 | |
|   Computes the magnitude of the elements of a complex data vector.
 | |
| 
 | |
|   The <code>pSrc</code> points to the source data and
 | |
|   <code>pDst</code> points to the where the result should be written.
 | |
|   <code>numSamples</code> specifies the number of complex samples
 | |
|   in the input array and the data is stored in an interleaved fashion
 | |
|   (real, imag, real, imag, ...).
 | |
|   The input array has a total of <code>2*numSamples</code> values;
 | |
|   the output array has a total of <code>numSamples</code> values.
 | |
| 
 | |
|   The underlying algorithm is used:
 | |
| 
 | |
|   <pre>
 | |
|   for (n = 0; n < numSamples; n++) {
 | |
|       pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
 | |
|   }
 | |
|   </pre>
 | |
| 
 | |
|   There are separate functions for floating-point, Q15, and Q31 data types.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @addtogroup cmplx_mag
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @brief         Floating-point complex magnitude.
 | |
|   @param[in]     pSrc        points to input vector
 | |
|   @param[out]    pDst        points to output vector
 | |
|   @param[in]     numSamples  number of samples in each vector
 | |
|   @return        none
 | |
|  */
 | |
| 
 | |
| #if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| #include "arm_vec_math.h"
 | |
| #endif
 | |
| 
 | |
| #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| #include "arm_helium_utils.h"
 | |
| 
 | |
| 
 | |
| void arm_cmplx_mag_f32(
 | |
|   const float32_t * pSrc,
 | |
|         float32_t * pDst,
 | |
|         uint32_t numSamples)
 | |
| {
 | |
|     int32_t blockSize = numSamples;  /* loop counters */
 | |
|     uint32_t  blkCnt;           /* loop counters */
 | |
|     f32x4x2_t vecSrc;
 | |
|     f32x4_t sum;
 | |
|     float32_t real, imag;                      /* Temporary variables to hold input values */
 | |
| 
 | |
|     /* Compute 4 complex samples at a time */
 | |
|     blkCnt = blockSize >> 2;
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         q31x4_t newtonStartVec;
 | |
|         f32x4_t sumHalf, invSqrt;
 | |
| 
 | |
|         vecSrc = vld2q(pSrc);  
 | |
|         pSrc += 8;
 | |
|         sum = vmulq(vecSrc.val[0], vecSrc.val[0]);
 | |
|         sum = vfmaq(sum, vecSrc.val[1], vecSrc.val[1]);
 | |
| 
 | |
|         /*
 | |
|          * inlined Fast SQRT using inverse SQRT newton-raphson method
 | |
|          */
 | |
| 
 | |
|         /* compute initial value */
 | |
|         newtonStartVec = vdupq_n_s32(INVSQRT_MAGIC_F32) - vshrq((q31x4_t) sum, 1);
 | |
|         sumHalf = sum * 0.5f;
 | |
|         /*
 | |
|          * compute 3 x iterations
 | |
|          *
 | |
|          * The more iterations, the more accuracy.
 | |
|          * If you need to trade a bit of accuracy for more performance,
 | |
|          * you can comment out the 3rd use of the macro.
 | |
|          */
 | |
|         INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, (f32x4_t) newtonStartVec);
 | |
|         INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, invSqrt);
 | |
|         INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, invSqrt);
 | |
|         /*
 | |
|          * set negative values to 0
 | |
|          */
 | |
|         invSqrt = vdupq_m(invSqrt, 0.0f, vcmpltq(invSqrt, 0.0f));
 | |
|         /*
 | |
|          * sqrt(x) = x * invSqrt(x)
 | |
|          */
 | |
|         sum = vmulq(sum, invSqrt);
 | |
|         vst1q(pDst, sum); 
 | |
|         pDst += 4;
 | |
|         /*
 | |
|          * Decrement the blockSize loop counter
 | |
|          */
 | |
|         blkCnt--;
 | |
|     }
 | |
|     /*
 | |
|      * tail
 | |
|      */
 | |
|     blkCnt = blockSize & 3;
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|       /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
 | |
|   
 | |
|       real = *pSrc++;
 | |
|       imag = *pSrc++;
 | |
|   
 | |
|       /* store result in destination buffer. */
 | |
|       arm_sqrt_f32((real * real) + (imag * imag), pDst++);
 | |
|   
 | |
|       /* Decrement loop counter */
 | |
|       blkCnt--;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else
 | |
| void arm_cmplx_mag_f32(
 | |
|   const float32_t * pSrc,
 | |
|         float32_t * pDst,
 | |
|         uint32_t numSamples)
 | |
| {
 | |
|   uint32_t blkCnt;                               /* loop counter */
 | |
|   float32_t real, imag;                      /* Temporary variables to hold input values */
 | |
| 
 | |
| #if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
|   float32x4x2_t vecA;
 | |
|   float32x4_t vRealA;
 | |
|   float32x4_t vImagA;
 | |
|   float32x4_t vMagSqA;
 | |
| 
 | |
|   float32x4x2_t vecB;
 | |
|   float32x4_t vRealB;
 | |
|   float32x4_t vImagB;
 | |
|   float32x4_t vMagSqB;
 | |
| 
 | |
|   /* Loop unrolling: Compute 8 outputs at a time */
 | |
|   blkCnt = numSamples >> 3;
 | |
| 
 | |
|   while (blkCnt > 0U)
 | |
|   {
 | |
|     /* out = sqrt((real * real) + (imag * imag)) */
 | |
| 
 | |
|     vecA = vld2q_f32(pSrc);
 | |
|     pSrc += 8;
 | |
| 
 | |
|     vecB = vld2q_f32(pSrc);
 | |
|     pSrc += 8;
 | |
| 
 | |
|     vRealA = vmulq_f32(vecA.val[0], vecA.val[0]);
 | |
|     vImagA = vmulq_f32(vecA.val[1], vecA.val[1]);
 | |
|     vMagSqA = vaddq_f32(vRealA, vImagA);
 | |
| 
 | |
|     vRealB = vmulq_f32(vecB.val[0], vecB.val[0]);
 | |
|     vImagB = vmulq_f32(vecB.val[1], vecB.val[1]);
 | |
|     vMagSqB = vaddq_f32(vRealB, vImagB);
 | |
| 
 | |
|     /* Store the result in the destination buffer. */
 | |
|     vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqA));
 | |
|     pDst += 4;
 | |
| 
 | |
|     vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqB));
 | |
|     pDst += 4;
 | |
| 
 | |
|     /* Decrement the loop counter */
 | |
|     blkCnt--;
 | |
|   }
 | |
| 
 | |
|   blkCnt = numSamples & 7;
 | |
| 
 | |
| #else
 | |
| 
 | |
| #if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
|   /* Loop unrolling: Compute 4 outputs at a time */
 | |
|   blkCnt = numSamples >> 2U;
 | |
| 
 | |
|   while (blkCnt > 0U)
 | |
|   {
 | |
|     /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
 | |
| 
 | |
|     real = *pSrc++;
 | |
|     imag = *pSrc++;
 | |
| 
 | |
|     /* store result in destination buffer. */
 | |
|     arm_sqrt_f32((real * real) + (imag * imag), pDst++);
 | |
| 
 | |
|     real = *pSrc++;
 | |
|     imag = *pSrc++;
 | |
|     arm_sqrt_f32((real * real) + (imag * imag), pDst++);
 | |
| 
 | |
|     real = *pSrc++;
 | |
|     imag = *pSrc++;
 | |
|     arm_sqrt_f32((real * real) + (imag * imag), pDst++);
 | |
| 
 | |
|     real = *pSrc++;
 | |
|     imag = *pSrc++;
 | |
|     arm_sqrt_f32((real * real) + (imag * imag), pDst++);
 | |
| 
 | |
|     /* Decrement loop counter */
 | |
|     blkCnt--;
 | |
|   }
 | |
| 
 | |
|   /* Loop unrolling: Compute remaining outputs */
 | |
|   blkCnt = numSamples % 0x4U;
 | |
| 
 | |
| #else
 | |
| 
 | |
|   /* Initialize blkCnt with number of samples */
 | |
|   blkCnt = numSamples;
 | |
| 
 | |
| #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
 | |
| #endif /* #if defined(ARM_MATH_NEON) */
 | |
| 
 | |
|   while (blkCnt > 0U)
 | |
|   {
 | |
|     /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
 | |
| 
 | |
|     real = *pSrc++;
 | |
|     imag = *pSrc++;
 | |
| 
 | |
|     /* store result in destination buffer. */
 | |
|     arm_sqrt_f32((real * real) + (imag * imag), pDst++);
 | |
| 
 | |
|     /* Decrement loop counter */
 | |
|     blkCnt--;
 | |
|   }
 | |
| 
 | |
| }
 | |
| #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
 | |
| 
 | |
| /**
 | |
|   @} end of cmplx_mag group
 | |
|  */
 | 
