mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-31 01:42:04 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			284 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			284 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_spline_interp_f32.c
 | |
|  * Description:  Floating-point cubic spline interpolation
 | |
|  *
 | |
|  * $Date:        23 April 2021
 | |
|  * $Revision:    V1.9.0
 | |
|  *
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "dsp/interpolation_functions.h"
 | |
| 
 | |
| /**
 | |
|   @ingroup groupInterpolation
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @defgroup SplineInterpolate Cubic Spline Interpolation
 | |
|  
 | |
|   Spline interpolation is a method of interpolation where the interpolant
 | |
|   is a piecewise-defined polynomial called "spline". 
 | |
|  
 | |
|   @par Introduction
 | |
| 
 | |
|   Given a function f defined on the interval [a,b], a set of n nodes x(i) 
 | |
|   where a=x(1)<x(2)<...<x(n)=b and a set of n values y(i) = f(x(i)), 
 | |
|   a cubic spline interpolant S(x) is defined as: 
 | |
| 
 | |
|   <pre>
 | |
|           S1(x)       x(1) < x < x(2)
 | |
|   S(x) =   ...         
 | |
|           Sn-1(x)   x(n-1) < x < x(n)
 | |
|   </pre>
 | |
| 
 | |
|   where
 | |
| 
 | |
|   <pre> 
 | |
|   Si(x) = a_i+b_i(x-xi)+c_i(x-xi)^2+d_i(x-xi)^3    i=1, ..., n-1
 | |
|   </pre>
 | |
|  
 | |
|   @par Algorithm
 | |
| 
 | |
|   Having defined h(i) = x(i+1) - x(i)
 | |
| 
 | |
|   <pre>
 | |
|   h(i-1)c(i-1)+2[h(i-1)+h(i)]c(i)+h(i)c(i+1) = 3/h(i)*[a(i+1)-a(i)]-3/h(i-1)*[a(i)-a(i-1)]    i=2, ..., n-1
 | |
|   </pre>
 | |
| 
 | |
|   It is possible to write the previous conditions in matrix form (Ax=B).
 | |
|   In order to solve the system two boundary conidtions are needed.
 | |
|   - Natural spline: S1''(x1)=2*c(1)=0 ; Sn''(xn)=2*c(n)=0
 | |
|   In matrix form:
 | |
| 
 | |
|   <pre>
 | |
|   |  1        0         0  ...    0         0           0     ||  c(1)  | |                        0                        |
 | |
|   | h(0) 2[h(0)+h(1)] h(1) ...    0         0           0     ||  c(2)  | |      3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)]      |
 | |
|   | ...      ...       ... ...   ...       ...         ...    ||  ...   |=|                       ...                       |
 | |
|   |  0        0         0  ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
 | |
|   |  0        0         0  ...    0         0           1     ||  c(n)  | |                        0                        |
 | |
|   </pre>
 | |
| 
 | |
|   - Parabolic runout spline: S1''(x1)=2*c(1)=S2''(x2)=2*c(2) ; Sn-1''(xn-1)=2*c(n-1)=Sn''(xn)=2*c(n)
 | |
|   In matrix form:
 | |
| 
 | |
|   <pre>
 | |
|   |  1       -1         0  ...    0         0           0     ||  c(1)  | |                        0                        |
 | |
|   | h(0) 2[h(0)+h(1)] h(1) ...    0         0           0     ||  c(2)  | |      3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)]      |
 | |
|   | ...      ...       ... ...   ...       ...         ...    ||  ...   |=|                       ...                       |
 | |
|   |  0        0         0  ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
 | |
|   |  0        0         0  ...    0        -1           1     ||  c(n)  | |                        0                        |
 | |
|   </pre>
 | |
| 
 | |
|   A is a tridiagonal matrix (a band matrix of bandwidth 3) of size N=n+1. The factorization
 | |
|   algorithms (A=LU) can be simplified considerably because a large number of zeros appear
 | |
|   in regular patterns. The Crout method has been used:
 | |
|   1) Solve LZ=B
 | |
| 
 | |
|   <pre>
 | |
|   u(1,2) = A(1,2)/A(1,1)
 | |
|   z(1)   = B(1)/l(11)
 | |
|  
 | |
|   FOR i=2, ..., N-1
 | |
|     l(i,i)   = A(i,i)-A(i,i-1)u(i-1,i)
 | |
|     u(i,i+1) = a(i,i+1)/l(i,i)
 | |
|     z(i)     = [B(i)-A(i,i-1)z(i-1)]/l(i,i)
 | |
|   
 | |
|   l(N,N) = A(N,N)-A(N,N-1)u(N-1,N)
 | |
|   z(N)   = [B(N)-A(N,N-1)z(N-1)]/l(N,N)
 | |
|   </pre>
 | |
| 
 | |
|   2) Solve UX=Z
 | |
| 
 | |
|   <pre>
 | |
|   c(N)=z(N)
 | |
|   
 | |
|   FOR i=N-1, ..., 1
 | |
|     c(i)=z(i)-u(i,i+1)c(i+1) 
 | |
|   </pre>
 | |
| 
 | |
|   c(i) for i=1, ..., n-1 are needed to compute the n-1 polynomials. 
 | |
|   b(i) and d(i) are computed as:
 | |
|   - b(i) = [y(i+1)-y(i)]/h(i)-h(i)*[c(i+1)+2*c(i)]/3 
 | |
|   - d(i) = [c(i+1)-c(i)]/[3*h(i)] 
 | |
|   Moreover, a(i)=y(i).
 | |
| 
 | |
|  @par Behaviour outside the given intervals
 | |
| 
 | |
|   It is possible to compute the interpolated vector for x values outside the 
 | |
|   input range (xq<x(1); xq>x(n)). The coefficients used to compute the y values for
 | |
|   xq<x(1) are going to be the ones used for the first interval, while for xq>x(n) the 
 | |
|   coefficients used for the last interval.
 | |
|  
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @addtogroup SplineInterpolate
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @brief Processing function for the floating-point cubic spline interpolation.
 | |
|  * @param[in]  S          points to an instance of the floating-point spline structure.
 | |
|  * @param[in]  xq         points to the x values of the interpolated data points.
 | |
|  * @param[out] pDst       points to the block of output data.
 | |
|  * @param[in]  blockSize  number of samples of output data.
 | |
|  */
 | |
| 
 | |
| void arm_spline_f32(
 | |
|         arm_spline_instance_f32 * S, 
 | |
|   const float32_t * xq,
 | |
|         float32_t * pDst,
 | |
|         uint32_t blockSize)
 | |
| {
 | |
|     const float32_t * x = S->x;
 | |
|     const float32_t * y = S->y;
 | |
|     int32_t n = S->n_x;
 | |
| 
 | |
|     /* Coefficients (a==y for i<=n-1) */
 | |
|     float32_t * b = (S->coeffs);
 | |
|     float32_t * c = (S->coeffs)+(n-1);
 | |
|     float32_t * d = (S->coeffs)+(2*(n-1));    
 | |
| 
 | |
|     const float32_t * pXq = xq;
 | |
|     int32_t blkCnt = (int32_t)blockSize;
 | |
|     int32_t blkCnt2;
 | |
|     int32_t i;
 | |
|     float32_t x_sc;
 | |
| 
 | |
| #ifdef ARM_MATH_NEON
 | |
|     float32x4_t xiv;
 | |
|     float32x4_t aiv;
 | |
|     float32x4_t biv;
 | |
|     float32x4_t civ;
 | |
|     float32x4_t div;
 | |
| 
 | |
|     float32x4_t xqv;
 | |
| 
 | |
|     float32x4_t temp;
 | |
|     float32x4_t diff;
 | |
|     float32x4_t yv;
 | |
| #endif
 | |
| 
 | |
|     /* Create output for x(i)<x<x(i+1) */
 | |
|     for (i=0; i<n-1; i++)
 | |
|     {
 | |
| #ifdef ARM_MATH_NEON
 | |
|         xiv = vdupq_n_f32(x[i]);
 | |
| 
 | |
|         aiv = vdupq_n_f32(y[i]);
 | |
|         biv = vdupq_n_f32(b[i]);
 | |
|         civ = vdupq_n_f32(c[i]);
 | |
|         div = vdupq_n_f32(d[i]);
 | |
| 
 | |
|         while( *(pXq+4) <= x[i+1] && blkCnt > 4 )
 | |
|         {
 | |
|             /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */
 | |
|             xqv = vld1q_f32(pXq);
 | |
|             pXq+=4;
 | |
|         
 | |
|             /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */
 | |
|             diff = vsubq_f32(xqv, xiv);
 | |
|             temp = diff;
 | |
|         
 | |
|             /* y(i) = a(i) + ... */
 | |
|             yv = aiv;
 | |
|             /* ... + b(i)*(x-x(i)) + ... */
 | |
|             yv = vmlaq_f32(yv, biv, temp);
 | |
|             /* ... + c(i)*(x-x(i))^2 + ... */
 | |
|             temp = vmulq_f32(temp, diff);
 | |
|             yv = vmlaq_f32(yv, civ, temp);
 | |
|             /* ... + d(i)*(x-x(i))^3 */
 | |
|             temp = vmulq_f32(temp, diff);
 | |
|             yv = vmlaq_f32(yv, div, temp);
 | |
|         
 | |
|             /* Store [y(k) y(k+1) y(k+2) y(k+3)] */
 | |
|             vst1q_f32(pDst, yv);
 | |
|             pDst+=4;
 | |
|         
 | |
|             blkCnt-=4;
 | |
|         }
 | |
| #endif
 | |
|         while( *pXq <= x[i+1] && blkCnt > 0 )
 | |
|         {
 | |
|             x_sc = *pXq++;
 | |
| 
 | |
|             *pDst = y[i]+b[i]*(x_sc-x[i])+c[i]*(x_sc-x[i])*(x_sc-x[i])+d[i]*(x_sc-x[i])*(x_sc-x[i])*(x_sc-x[i]);
 | |
| 
 | |
|             pDst++;
 | |
|             blkCnt--;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Create output for remaining samples (x>=x(n)) */
 | |
| #ifdef ARM_MATH_NEON
 | |
|     /* Compute 4 outputs at a time */
 | |
|     blkCnt2 = blkCnt >> 2;
 | |
| 
 | |
|     while(blkCnt2 > 0) 
 | |
|     { 
 | |
|         /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */ 
 | |
|         xqv = vld1q_f32(pXq);
 | |
|         pXq+=4;
 | |
|                                                          
 | |
|         /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */
 | |
|         diff = vsubq_f32(xqv, xiv);
 | |
|         temp = diff; 
 | |
| 
 | |
|         /* y(i) = a(i) + ... */ 
 | |
|         yv = aiv; 
 | |
|         /* ... + b(i)*(x-x(i)) + ... */ 
 | |
|         yv = vmlaq_f32(yv, biv, temp);
 | |
|         /* ... + c(i)*(x-x(i))^2 + ... */
 | |
|         temp = vmulq_f32(temp, diff);
 | |
|         yv = vmlaq_f32(yv, civ, temp);
 | |
|         /* ... + d(i)*(x-x(i))^3 */
 | |
|         temp = vmulq_f32(temp, diff);
 | |
|         yv = vmlaq_f32(yv, div, temp);
 | |
| 
 | |
|         /* Store [y(k) y(k+1) y(k+2) y(k+3)] */
 | |
|         vst1q_f32(pDst, yv);
 | |
|         pDst+=4;
 | |
| 
 | |
|         blkCnt2--;
 | |
|     } 
 | |
| 
 | |
|     /* Tail */
 | |
|     blkCnt2 = blkCnt & 3;                                      
 | |
| #else                                                        
 | |
|     blkCnt2 = blkCnt;                                          
 | |
| #endif
 | |
| 
 | |
|     while(blkCnt2 > 0)                                       
 | |
|     { 
 | |
|         x_sc = *pXq++; 
 | |
|   
 | |
|         *pDst = y[i-1]+b[i-1]*(x_sc-x[i-1])+c[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])+d[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])*(x_sc-x[i-1]);
 | |
|  
 | |
|         pDst++; 
 | |
|         blkCnt2--;   
 | |
|     }   
 | |
| }
 | |
| 
 | |
| /**
 | |
|   @} end of SplineInterpolate group
 | |
|  */
 | 
