mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-31 01:42:04 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			439 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			439 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_mat_cholesky_f32.c
 | |
|  * Description:  Floating-point Cholesky decomposition
 | |
|  *
 | |
|  * $Date:        05 October 2021
 | |
|  * $Revision:    V1.9.1
 | |
|  *
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "dsp/matrix_functions.h"
 | |
| 
 | |
| /**
 | |
|   @ingroup groupMatrix
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @defgroup MatrixChol Cholesky and LDLT decompositions
 | |
| 
 | |
|   Computes the Cholesky or LDL^t decomposition of a matrix.
 | |
| 
 | |
| 
 | |
|   If the input matrix does not have a decomposition, then the 
 | |
|   algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @addtogroup MatrixChol
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|    * @brief Floating-point Cholesky decomposition of positive-definite matrix.
 | |
|    * @param[in]  pSrc   points to the instance of the input floating-point matrix structure.
 | |
|    * @param[out] pDst   points to the instance of the output floating-point matrix structure.
 | |
|    * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
 | |
|    * @return        execution status
 | |
|                    - \ref ARM_MATH_SUCCESS       : Operation successful
 | |
|                    - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
 | |
|                    - \ref ARM_MATH_DECOMPOSITION_FAILURE      : Input matrix cannot be decomposed
 | |
|    * @par
 | |
|    * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
 | |
|    * The decomposition of A is returning a lower triangular matrix U such that A = U U^t
 | |
|    */
 | |
| 
 | |
| #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| #include "arm_helium_utils.h"
 | |
| 
 | |
| arm_status arm_mat_cholesky_f32(
 | |
|   const arm_matrix_instance_f32 * pSrc,
 | |
|         arm_matrix_instance_f32 * pDst)
 | |
| {
 | |
| 
 | |
|   arm_status status;                             /* status of matrix inverse */
 | |
| 
 | |
| 
 | |
| #ifdef ARM_MATH_MATRIX_CHECK
 | |
| 
 | |
|   /* Check for matrix mismatch condition */
 | |
|   if ((pSrc->numRows != pSrc->numCols) ||
 | |
|       (pDst->numRows != pDst->numCols) ||
 | |
|       (pSrc->numRows != pDst->numRows)   )
 | |
|   {
 | |
|     /* Set status as ARM_MATH_SIZE_MISMATCH */
 | |
|     status = ARM_MATH_SIZE_MISMATCH;
 | |
|   }
 | |
|   else
 | |
| 
 | |
| #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
 | |
| 
 | |
|   {
 | |
|     int i,j,k;
 | |
|     int n = pSrc->numRows;
 | |
|     float32_t invSqrtVj;
 | |
|     float32_t *pA,*pG;
 | |
|     int kCnt;
 | |
| 
 | |
|     mve_pred16_t p0;
 | |
| 
 | |
|     f32x4_t acc, acc0, acc1, acc2, acc3;
 | |
|     f32x4_t vecGi;
 | |
|     f32x4_t vecGj,vecGj0,vecGj1,vecGj2,vecGj3;
 | |
| 
 | |
| 
 | |
|     pA = pSrc->pData;
 | |
|     pG = pDst->pData;
 | |
|     
 | |
|     for(i=0 ;i < n ; i++)
 | |
|     {
 | |
|        for(j=i ; j+3 < n ; j+=4)
 | |
|        {
 | |
|           pG[(j + 0) * n + i] = pA[(j + 0) * n + i];
 | |
|           pG[(j + 1) * n + i] = pA[(j + 1) * n + i];
 | |
|           pG[(j + 2) * n + i] = pA[(j + 2) * n + i];
 | |
|           pG[(j + 3) * n + i] = pA[(j + 3) * n + i];
 | |
| 
 | |
|           kCnt = i;
 | |
|           acc0 = vdupq_n_f32(0.0f);
 | |
|           acc1 = vdupq_n_f32(0.0f);
 | |
|           acc2 = vdupq_n_f32(0.0f);
 | |
|           acc3 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|           for(k=0; k < i ; k+=4)
 | |
|           {
 | |
|              p0 = vctp32q(kCnt);
 | |
| 
 | |
|              vecGi=vldrwq_z_f32(&pG[i * n + k],p0);
 | |
|              
 | |
|              vecGj0=vldrwq_z_f32(&pG[(j + 0) * n + k],p0);
 | |
|              vecGj1=vldrwq_z_f32(&pG[(j + 1) * n + k],p0);
 | |
|              vecGj2=vldrwq_z_f32(&pG[(j + 2) * n + k],p0);
 | |
|              vecGj3=vldrwq_z_f32(&pG[(j + 3) * n + k],p0);
 | |
| 
 | |
|              acc0 = vfmaq_m(acc0, vecGi, vecGj0, p0);
 | |
|              acc1 = vfmaq_m(acc1, vecGi, vecGj1, p0);
 | |
|              acc2 = vfmaq_m(acc2, vecGi, vecGj2, p0);
 | |
|              acc3 = vfmaq_m(acc3, vecGi, vecGj3, p0);
 | |
| 
 | |
|              kCnt -= 4;
 | |
|           }
 | |
|           pG[(j + 0) * n + i] -= vecAddAcrossF32Mve(acc0);
 | |
|           pG[(j + 1) * n + i] -= vecAddAcrossF32Mve(acc1);
 | |
|           pG[(j + 2) * n + i] -= vecAddAcrossF32Mve(acc2);
 | |
|           pG[(j + 3) * n + i] -= vecAddAcrossF32Mve(acc3);
 | |
|        }
 | |
| 
 | |
|        for(; j < n ; j++)
 | |
|        {
 | |
|           pG[j * n + i] = pA[j * n + i];
 | |
| 
 | |
|           kCnt = i;
 | |
|           acc = vdupq_n_f32(0.0f);
 | |
| 
 | |
|           for(k=0; k < i ; k+=4)
 | |
|           {
 | |
|              p0 = vctp32q(kCnt);
 | |
| 
 | |
|              vecGi=vldrwq_z_f32(&pG[i * n + k],p0);
 | |
|              vecGj=vldrwq_z_f32(&pG[j * n + k],p0);
 | |
| 
 | |
|              acc = vfmaq_m(acc, vecGi, vecGj,p0);
 | |
| 
 | |
|              kCnt -= 4;
 | |
|           }
 | |
|           pG[j * n + i] -= vecAddAcrossF32Mve(acc);
 | |
|        }
 | |
| 
 | |
|        if (pG[i * n + i] <= 0.0f)
 | |
|        {
 | |
|          return(ARM_MATH_DECOMPOSITION_FAILURE);
 | |
|        }
 | |
| 
 | |
|        invSqrtVj = 1.0f/sqrtf(pG[i * n + i]);
 | |
|        for(j=i; j < n ; j++)
 | |
|        {
 | |
|          pG[j * n + i] = pG[j * n + i] * invSqrtVj ;
 | |
|        }
 | |
|     }
 | |
| 
 | |
|     status = ARM_MATH_SUCCESS;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   
 | |
|   /* Return to application */
 | |
|   return (status);
 | |
| }
 | |
| 
 | |
| #else
 | |
| #if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| arm_status arm_mat_cholesky_f32(
 | |
|   const arm_matrix_instance_f32 * pSrc,
 | |
|         arm_matrix_instance_f32 * pDst)
 | |
| {
 | |
| 
 | |
|   arm_status status;                             /* status of matrix inverse */
 | |
| 
 | |
| 
 | |
| #ifdef ARM_MATH_MATRIX_CHECK
 | |
| 
 | |
|   /* Check for matrix mismatch condition */
 | |
|   if ((pSrc->numRows != pSrc->numCols) ||
 | |
|       (pDst->numRows != pDst->numCols) ||
 | |
|       (pSrc->numRows != pDst->numRows)   )
 | |
|   {
 | |
|     /* Set status as ARM_MATH_SIZE_MISMATCH */
 | |
|     status = ARM_MATH_SIZE_MISMATCH;
 | |
|   }
 | |
|   else
 | |
| 
 | |
| #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
 | |
| 
 | |
|   {
 | |
|     int i,j,k;
 | |
|     int n = pSrc->numRows;
 | |
|     float32_t invSqrtVj;
 | |
|     float32_t *pA,*pG;
 | |
|     int kCnt;
 | |
| 
 | |
| 
 | |
|     f32x4_t acc, acc0, acc1, acc2, acc3;
 | |
|     f32x4_t vecGi;
 | |
|     f32x4_t vecGj,vecGj0,vecGj1,vecGj2,vecGj3;
 | |
| #if !defined(__aarch64__)
 | |
|     f32x2_t tmp = vdup_n_f32(0);   
 | |
| #endif    
 | |
|     float32_t sum=0.0f;
 | |
|     float32_t sum0=0.0f,sum1=0.0f,sum2=0.0f,sum3=0.0f;
 | |
| 
 | |
| 
 | |
|     pA = pSrc->pData;
 | |
|     pG = pDst->pData;
 | |
|     
 | |
|     for(i=0 ;i < n ; i++)
 | |
|     {
 | |
|        for(j=i ; j+3 < n ; j+=4)
 | |
|        {
 | |
|           pG[(j + 0) * n + i] = pA[(j + 0) * n + i];
 | |
|           pG[(j + 1) * n + i] = pA[(j + 1) * n + i];
 | |
|           pG[(j + 2) * n + i] = pA[(j + 2) * n + i];
 | |
|           pG[(j + 3) * n + i] = pA[(j + 3) * n + i];
 | |
| 
 | |
|           acc0 = vdupq_n_f32(0.0f);
 | |
|           acc1 = vdupq_n_f32(0.0f);
 | |
|           acc2 = vdupq_n_f32(0.0f);
 | |
|           acc3 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|           kCnt = i >> 2;
 | |
|           k=0;
 | |
|           while(kCnt > 0)
 | |
|           {
 | |
| 
 | |
|              vecGi=vld1q_f32(&pG[i * n + k]);
 | |
|              
 | |
|              vecGj0=vld1q_f32(&pG[(j + 0) * n + k]);
 | |
|              vecGj1=vld1q_f32(&pG[(j + 1) * n + k]);
 | |
|              vecGj2=vld1q_f32(&pG[(j + 2) * n + k]);
 | |
|              vecGj3=vld1q_f32(&pG[(j + 3) * n + k]);
 | |
| 
 | |
|              acc0 = vfmaq_f32(acc0, vecGi, vecGj0);
 | |
|              acc1 = vfmaq_f32(acc1, vecGi, vecGj1);
 | |
|              acc2 = vfmaq_f32(acc2, vecGi, vecGj2);
 | |
|              acc3 = vfmaq_f32(acc3, vecGi, vecGj3);
 | |
| 
 | |
|              kCnt--;
 | |
|              k+=4;
 | |
|           }
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
|           sum0 = vpadds_f32(vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0)));
 | |
|           sum1 = vpadds_f32(vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1)));
 | |
|           sum2 = vpadds_f32(vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2)));
 | |
|           sum3 = vpadds_f32(vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3)));
 | |
| 
 | |
| #else
 | |
|           tmp = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
 | |
|           sum0 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
 | |
| 
 | |
|           tmp = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
 | |
|           sum1 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
 | |
| 
 | |
|           tmp = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
 | |
|           sum2 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
 | |
| 
 | |
|           tmp = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
 | |
|           sum3 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
 | |
| #endif
 | |
| 
 | |
|           kCnt = i & 3;
 | |
|           while(kCnt > 0)
 | |
|           {
 | |
| 
 | |
|              sum0 = sum0 + pG[i * n + k] * pG[(j + 0) * n + k];
 | |
|              sum1 = sum1 + pG[i * n + k] * pG[(j + 1) * n + k];
 | |
|              sum2 = sum2 + pG[i * n + k] * pG[(j + 2) * n + k];
 | |
|              sum3 = sum3 + pG[i * n + k] * pG[(j + 3) * n + k];
 | |
|              kCnt--;
 | |
|              k++;
 | |
|           }
 | |
| 
 | |
|           pG[(j + 0) * n + i] -= sum0;
 | |
|           pG[(j + 1) * n + i] -= sum1;
 | |
|           pG[(j + 2) * n + i] -= sum2;
 | |
|           pG[(j + 3) * n + i] -= sum3;
 | |
|        }
 | |
| 
 | |
|        for(; j < n ; j++)
 | |
|        {
 | |
|           pG[j * n + i] = pA[j * n + i];
 | |
| 
 | |
|           acc = vdupq_n_f32(0.0f);
 | |
| 
 | |
|           kCnt = i >> 2;
 | |
|           k=0;
 | |
|           while(kCnt > 0)
 | |
|           {
 | |
| 
 | |
|              vecGi=vld1q_f32(&pG[i * n + k]);
 | |
|              vecGj=vld1q_f32(&pG[j * n + k]);
 | |
| 
 | |
|              acc = vfmaq_f32(acc, vecGi, vecGj);
 | |
| 
 | |
|              kCnt--;
 | |
|              k+=4;
 | |
|           }
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
|           sum = vpadds_f32(vpadd_f32(vget_low_f32(acc), vget_high_f32(acc)));
 | |
| #else
 | |
|           tmp = vpadd_f32(vget_low_f32(acc), vget_high_f32(acc));
 | |
|           sum = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
 | |
| #endif
 | |
| 
 | |
|           kCnt = i & 3;
 | |
|           while(kCnt > 0)
 | |
|           {
 | |
|              sum = sum + pG[i * n + k] * pG[(j + 0) * n + k];
 | |
| 
 | |
|             
 | |
|              kCnt--;
 | |
|              k++;
 | |
|           }
 | |
| 
 | |
|           pG[j * n + i] -= sum;
 | |
|        }
 | |
| 
 | |
|        if (pG[i * n + i] <= 0.0f)
 | |
|        {
 | |
|          return(ARM_MATH_DECOMPOSITION_FAILURE);
 | |
|        }
 | |
| 
 | |
|        invSqrtVj = 1.0f/sqrtf(pG[i * n + i]);
 | |
|        for(j=i; j < n ; j++)
 | |
|        {
 | |
|          pG[j * n + i] = pG[j * n + i] * invSqrtVj ;
 | |
|        }
 | |
|     }
 | |
| 
 | |
|     status = ARM_MATH_SUCCESS;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   
 | |
|   /* Return to application */
 | |
|   return (status);
 | |
| }
 | |
| 
 | |
| #else
 | |
| arm_status arm_mat_cholesky_f32(
 | |
|   const arm_matrix_instance_f32 * pSrc,
 | |
|         arm_matrix_instance_f32 * pDst)
 | |
| {
 | |
| 
 | |
|   arm_status status;                             /* status of matrix inverse */
 | |
| 
 | |
| 
 | |
| #ifdef ARM_MATH_MATRIX_CHECK
 | |
| 
 | |
|   /* Check for matrix mismatch condition */
 | |
|   if ((pSrc->numRows != pSrc->numCols) ||
 | |
|       (pDst->numRows != pDst->numCols) ||
 | |
|       (pSrc->numRows != pDst->numRows)   )
 | |
|   {
 | |
|     /* Set status as ARM_MATH_SIZE_MISMATCH */
 | |
|     status = ARM_MATH_SIZE_MISMATCH;
 | |
|   }
 | |
|   else
 | |
| 
 | |
| #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
 | |
| 
 | |
|   {
 | |
|     int i,j,k;
 | |
|     int n = pSrc->numRows;
 | |
|     float32_t invSqrtVj;
 | |
|     float32_t *pA,*pG;
 | |
| 
 | |
|     pA = pSrc->pData;
 | |
|     pG = pDst->pData;
 | |
|     
 | |
| 
 | |
|     for(i=0 ; i < n ; i++)
 | |
|     {
 | |
|        for(j=i ; j < n ; j++)
 | |
|        {
 | |
|           pG[j * n + i] = pA[j * n + i];
 | |
| 
 | |
|           for(k=0; k < i ; k++)
 | |
|           {
 | |
|              pG[j * n + i] = pG[j * n + i] - pG[i * n + k] * pG[j * n + k];
 | |
|           }
 | |
|        }
 | |
| 
 | |
|        if (pG[i * n + i] <= 0.0f)
 | |
|        {
 | |
|          return(ARM_MATH_DECOMPOSITION_FAILURE);
 | |
|        }
 | |
| 
 | |
|        invSqrtVj = 1.0f/sqrtf(pG[i * n + i]);
 | |
|        for(j=i ; j < n ; j++)
 | |
|        {
 | |
|          pG[j * n + i] = pG[j * n + i] * invSqrtVj ;
 | |
|        }
 | |
|     }
 | |
| 
 | |
|     status = ARM_MATH_SUCCESS;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   
 | |
|   /* Return to application */
 | |
|   return (status);
 | |
| }
 | |
| #endif /* #if defined(ARM_MATH_NEON) */
 | |
| #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
 | |
| 
 | |
| /**
 | |
|   @} end of MatrixChol group
 | |
|  */
 | 
