mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-31 01:42:04 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			374 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			374 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /******************************************************************************
 | |
|  * @file     arm_vec_math.h
 | |
|  * @brief    Public header file for CMSIS DSP Library
 | |
|  * @version  V1.10.0
 | |
|  * @date     08 July 2021
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  ******************************************************************************/
 | |
| /*
 | |
|  * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #ifndef _ARM_VEC_MATH_H
 | |
| #define _ARM_VEC_MATH_H
 | |
| 
 | |
| #include "arm_math_types.h"
 | |
| #include "arm_common_tables.h"
 | |
| #include "arm_helium_utils.h"
 | |
| 
 | |
| #ifdef   __cplusplus
 | |
| extern "C"
 | |
| {
 | |
| #endif
 | |
| 
 | |
| #if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| #define INV_NEWTON_INIT_F32         0x7EF127EA
 | |
| 
 | |
| static const float32_t __logf_rng_f32=0.693147180f;
 | |
| 
 | |
| 
 | |
| /* fast inverse approximation (3x newton) */
 | |
| __STATIC_INLINE f32x4_t vrecip_medprec_f32(
 | |
|     f32x4_t x)
 | |
| {
 | |
|     q31x4_t         m;
 | |
|     f32x4_t         b;
 | |
|     any32x4_t       xinv;
 | |
|     f32x4_t         ax = vabsq(x);
 | |
| 
 | |
|     xinv.f = ax;
 | |
|     m = 0x3F800000 - (xinv.i & 0x7F800000);
 | |
|     xinv.i = xinv.i + m;
 | |
|     xinv.f = 1.41176471f - 0.47058824f * xinv.f;
 | |
|     xinv.i = xinv.i + m;
 | |
| 
 | |
|     b = 2.0f - xinv.f * ax;
 | |
|     xinv.f = xinv.f * b;
 | |
| 
 | |
|     b = 2.0f - xinv.f * ax;
 | |
|     xinv.f = xinv.f * b;
 | |
| 
 | |
|     b = 2.0f - xinv.f * ax;
 | |
|     xinv.f = xinv.f * b;
 | |
| 
 | |
|     xinv.f = vdupq_m(xinv.f, INFINITY, vcmpeqq(x, 0.0f));
 | |
|     /*
 | |
|      * restore sign
 | |
|      */
 | |
|     xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq(x, 0.0f));
 | |
| 
 | |
|     return xinv.f;
 | |
| }
 | |
| 
 | |
| /* fast inverse approximation (4x newton) */
 | |
| __STATIC_INLINE f32x4_t vrecip_hiprec_f32(
 | |
|     f32x4_t x)
 | |
| {
 | |
|     q31x4_t         m;
 | |
|     f32x4_t         b;
 | |
|     any32x4_t       xinv;
 | |
|     f32x4_t         ax = vabsq(x);
 | |
| 
 | |
|     xinv.f = ax;
 | |
| 
 | |
|     m = 0x3F800000 - (xinv.i & 0x7F800000);
 | |
|     xinv.i = xinv.i + m;
 | |
|     xinv.f = 1.41176471f - 0.47058824f * xinv.f;
 | |
|     xinv.i = xinv.i + m;
 | |
| 
 | |
|     b = 2.0f - xinv.f * ax;
 | |
|     xinv.f = xinv.f * b;
 | |
| 
 | |
|     b = 2.0f - xinv.f * ax;
 | |
|     xinv.f = xinv.f * b;
 | |
| 
 | |
|     b = 2.0f - xinv.f * ax;
 | |
|     xinv.f = xinv.f * b;
 | |
| 
 | |
|     b = 2.0f - xinv.f * ax;
 | |
|     xinv.f = xinv.f * b;
 | |
| 
 | |
|     xinv.f = vdupq_m(xinv.f, INFINITY, vcmpeqq(x, 0.0f));
 | |
|     /*
 | |
|      * restore sign
 | |
|      */
 | |
|     xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq(x, 0.0f));
 | |
| 
 | |
|     return xinv.f;
 | |
| }
 | |
| 
 | |
| __STATIC_INLINE f32x4_t vdiv_f32(
 | |
|     f32x4_t num, f32x4_t den)
 | |
| {
 | |
|     return vmulq(num, vrecip_hiprec_f32(den));
 | |
| }
 | |
| 
 | |
| /**
 | |
|   @brief         Single-precision taylor dev.
 | |
|   @param[in]     x              f32 quad vector input
 | |
|   @param[in]     coeffs         f32 quad vector coeffs
 | |
|   @return        destination    f32 quad vector
 | |
|  */
 | |
| 
 | |
| __STATIC_INLINE f32x4_t vtaylor_polyq_f32(
 | |
|         f32x4_t           x,
 | |
|         const float32_t * coeffs)
 | |
| {
 | |
|     f32x4_t         A = vfmasq(vdupq_n_f32(coeffs[4]), x, coeffs[0]);
 | |
|     f32x4_t         B = vfmasq(vdupq_n_f32(coeffs[6]), x, coeffs[2]);
 | |
|     f32x4_t         C = vfmasq(vdupq_n_f32(coeffs[5]), x, coeffs[1]);
 | |
|     f32x4_t         D = vfmasq(vdupq_n_f32(coeffs[7]), x, coeffs[3]);
 | |
|     f32x4_t         x2 = vmulq(x, x);
 | |
|     f32x4_t         x4 = vmulq(x2, x2);
 | |
|     f32x4_t         res = vfmaq(vfmaq_f32(A, B, x2), vfmaq_f32(C, D, x2), x4);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| __STATIC_INLINE f32x4_t vmant_exp_f32(
 | |
|     f32x4_t     x,
 | |
|     int32x4_t * e)
 | |
| {
 | |
|     any32x4_t       r;
 | |
|     int32x4_t       n;
 | |
| 
 | |
|     r.f = x;
 | |
|     n = r.i >> 23;
 | |
|     n = n - 127;
 | |
|     r.i = r.i - (n << 23);
 | |
| 
 | |
|     *e = n;
 | |
|     return r.f;
 | |
| }
 | |
| 
 | |
| 
 | |
| __STATIC_INLINE f32x4_t vlogq_f32(f32x4_t vecIn)
 | |
| {
 | |
|     q31x4_t         vecExpUnBiased;
 | |
|     f32x4_t         vecTmpFlt0, vecTmpFlt1;
 | |
|     f32x4_t         vecAcc0, vecAcc1, vecAcc2, vecAcc3;
 | |
|     f32x4_t         vecExpUnBiasedFlt;
 | |
| 
 | |
|     /*
 | |
|      * extract exponent
 | |
|      */
 | |
|     vecTmpFlt1 = vmant_exp_f32(vecIn, &vecExpUnBiased);
 | |
| 
 | |
|     vecTmpFlt0 = vecTmpFlt1 * vecTmpFlt1;
 | |
|     /*
 | |
|      * a = (__logf_lut_f32[4] * r.f) + (__logf_lut_f32[0]);
 | |
|      */
 | |
|     vecAcc0 = vdupq_n_f32(__logf_lut_f32[0]);
 | |
|     vecAcc0 = vfmaq(vecAcc0, vecTmpFlt1, __logf_lut_f32[4]);
 | |
|     /*
 | |
|      * b = (__logf_lut_f32[6] * r.f) + (__logf_lut_f32[2]);
 | |
|      */
 | |
|     vecAcc1 = vdupq_n_f32(__logf_lut_f32[2]);
 | |
|     vecAcc1 = vfmaq(vecAcc1, vecTmpFlt1, __logf_lut_f32[6]);
 | |
|     /*
 | |
|      * c = (__logf_lut_f32[5] * r.f) + (__logf_lut_f32[1]);
 | |
|      */
 | |
|     vecAcc2 = vdupq_n_f32(__logf_lut_f32[1]);
 | |
|     vecAcc2 = vfmaq(vecAcc2, vecTmpFlt1, __logf_lut_f32[5]);
 | |
|     /*
 | |
|      * d = (__logf_lut_f32[7] * r.f) + (__logf_lut_f32[3]);
 | |
|      */
 | |
|     vecAcc3 = vdupq_n_f32(__logf_lut_f32[3]);
 | |
|     vecAcc3 = vfmaq(vecAcc3, vecTmpFlt1, __logf_lut_f32[7]);
 | |
|     /*
 | |
|      * a = a + b * xx;
 | |
|      */
 | |
|     vecAcc0 = vfmaq(vecAcc0, vecAcc1, vecTmpFlt0);
 | |
|     /*
 | |
|      * c = c + d * xx;
 | |
|      */
 | |
|     vecAcc2 = vfmaq(vecAcc2, vecAcc3, vecTmpFlt0);
 | |
|     /*
 | |
|      * xx = xx * xx;
 | |
|      */
 | |
|     vecTmpFlt0 = vecTmpFlt0 * vecTmpFlt0;
 | |
|     vecExpUnBiasedFlt = vcvtq_f32_s32(vecExpUnBiased);
 | |
|     /*
 | |
|      * r.f = a + c * xx;
 | |
|      */
 | |
|     vecAcc0 = vfmaq(vecAcc0, vecAcc2, vecTmpFlt0);
 | |
|     /*
 | |
|      * add exponent
 | |
|      * r.f = r.f + ((float32_t) m) * __logf_rng_f32;
 | |
|      */
 | |
|     vecAcc0 = vfmaq(vecAcc0, vecExpUnBiasedFlt, __logf_rng_f32);
 | |
|     // set log0 down to -inf
 | |
|     vecAcc0 = vdupq_m(vecAcc0, -INFINITY, vcmpeqq(vecIn, 0.0f));
 | |
|     return vecAcc0;
 | |
| }
 | |
| 
 | |
| __STATIC_INLINE f32x4_t vexpq_f32(
 | |
|     f32x4_t x)
 | |
| {
 | |
|     // Perform range reduction [-log(2),log(2)]
 | |
|     int32x4_t       m = vcvtq_s32_f32(vmulq_n_f32(x, 1.4426950408f));
 | |
|     f32x4_t         val = vfmsq_f32(x, vcvtq_f32_s32(m), vdupq_n_f32(0.6931471805f));
 | |
| 
 | |
|     // Polynomial Approximation
 | |
|     f32x4_t         poly = vtaylor_polyq_f32(val, exp_tab);
 | |
| 
 | |
|     // Reconstruct
 | |
|     poly = (f32x4_t) (vqaddq_s32((q31x4_t) (poly), vqshlq_n_s32(m, 23)));
 | |
| 
 | |
|     poly = vdupq_m(poly, 0.0f, vcmpltq_n_s32(m, -126));
 | |
|     return poly;
 | |
| }
 | |
| 
 | |
| __STATIC_INLINE f32x4_t arm_vec_exponent_f32(f32x4_t x, int32_t nb)
 | |
| {
 | |
|     f32x4_t         r = x;
 | |
|     nb--;
 | |
|     while (nb > 0) {
 | |
|         r = vmulq(r, x);
 | |
|         nb--;
 | |
|     }
 | |
|     return (r);
 | |
| }
 | |
| 
 | |
| __STATIC_INLINE f32x4_t vrecip_f32(f32x4_t vecIn)
 | |
| {
 | |
|     f32x4_t     vecSx, vecW, vecTmp;
 | |
|     any32x4_t   v;
 | |
| 
 | |
|     vecSx = vabsq(vecIn);
 | |
| 
 | |
|     v.f = vecIn;
 | |
|     v.i = vsubq(vdupq_n_s32(INV_NEWTON_INIT_F32), v.i);
 | |
| 
 | |
|     vecW = vmulq(vecSx, v.f);
 | |
| 
 | |
|     // v.f = v.f * (8 + w * (-28 + w * (56 + w * (-70 + w *(56 + w * (-28 + w * (8 - w)))))));
 | |
|     vecTmp = vsubq(vdupq_n_f32(8.0f), vecW);
 | |
|     vecTmp = vfmasq(vecW, vecTmp, -28.0f);
 | |
|     vecTmp = vfmasq(vecW, vecTmp, 56.0f);
 | |
|     vecTmp = vfmasq(vecW, vecTmp, -70.0f);
 | |
|     vecTmp = vfmasq(vecW, vecTmp, 56.0f);
 | |
|     vecTmp = vfmasq(vecW, vecTmp, -28.0f);
 | |
|     vecTmp = vfmasq(vecW, vecTmp, 8.0f);
 | |
|     v.f = vmulq(v.f,  vecTmp);
 | |
| 
 | |
|     v.f = vdupq_m(v.f, INFINITY, vcmpeqq(vecIn, 0.0f));
 | |
|     /*
 | |
|      * restore sign
 | |
|      */
 | |
|     v.f = vnegq_m(v.f, v.f, vcmpltq(vecIn, 0.0f));
 | |
|     return v.f;
 | |
| }
 | |
| 
 | |
| __STATIC_INLINE f32x4_t vtanhq_f32(
 | |
|     f32x4_t val)
 | |
| {
 | |
|     f32x4_t         x =
 | |
|         vminnmq_f32(vmaxnmq_f32(val, vdupq_n_f32(-10.f)), vdupq_n_f32(10.0f));
 | |
|     f32x4_t         exp2x = vexpq_f32(vmulq_n_f32(x, 2.f));
 | |
|     f32x4_t         num = vsubq_n_f32(exp2x, 1.f);
 | |
|     f32x4_t         den = vaddq_n_f32(exp2x, 1.f);
 | |
|     f32x4_t         tanh = vmulq_f32(num, vrecip_f32(den));
 | |
|     return tanh;
 | |
| }
 | |
| 
 | |
| __STATIC_INLINE f32x4_t vpowq_f32(
 | |
|     f32x4_t val,
 | |
|     f32x4_t n)
 | |
| {
 | |
|     return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));
 | |
| }
 | |
| 
 | |
| #endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)*/
 | |
| 
 | |
| #if (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| #endif /* (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) */
 | |
| 
 | |
| #if (defined(ARM_MATH_NEON) || defined(ARM_MATH_NEON_EXPERIMENTAL)) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| #include "NEMath.h"
 | |
| /**
 | |
|  * @brief Vectorized integer exponentiation
 | |
|  * @param[in]    x           value
 | |
|  * @param[in]    nb          integer exponent >= 1
 | |
|  * @return x^nb
 | |
|  *
 | |
|  */
 | |
| __STATIC_INLINE  float32x4_t arm_vec_exponent_f32(float32x4_t x, int32_t nb)
 | |
| {
 | |
|     float32x4_t r = x;
 | |
|     nb --;
 | |
|     while(nb > 0)
 | |
|     {
 | |
|         r = vmulq_f32(r , x);
 | |
|         nb--;
 | |
|     }
 | |
|     return(r);
 | |
| }
 | |
| 
 | |
| 
 | |
| __STATIC_INLINE float32x4_t __arm_vec_sqrt_f32_neon(float32x4_t  x)
 | |
| {
 | |
|     float32x4_t x1 = vmaxq_f32(x, vdupq_n_f32(FLT_MIN));
 | |
|     float32x4_t e = vrsqrteq_f32(x1);
 | |
|     e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e);
 | |
|     e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e);
 | |
|     return vmulq_f32(x, e);
 | |
| }
 | |
| 
 | |
| __STATIC_INLINE int16x8_t __arm_vec_sqrt_q15_neon(int16x8_t vec)
 | |
| {
 | |
|     float32x4_t tempF;
 | |
|     int32x4_t tempHI,tempLO;
 | |
| 
 | |
|     tempLO = vmovl_s16(vget_low_s16(vec));
 | |
|     tempF = vcvtq_n_f32_s32(tempLO,15);
 | |
|     tempF = __arm_vec_sqrt_f32_neon(tempF);
 | |
|     tempLO = vcvtq_n_s32_f32(tempF,15);
 | |
| 
 | |
|     tempHI = vmovl_s16(vget_high_s16(vec));
 | |
|     tempF = vcvtq_n_f32_s32(tempHI,15);
 | |
|     tempF = __arm_vec_sqrt_f32_neon(tempF);
 | |
|     tempHI = vcvtq_n_s32_f32(tempF,15);
 | |
| 
 | |
|     return(vcombine_s16(vqmovn_s32(tempLO),vqmovn_s32(tempHI)));
 | |
| }
 | |
| 
 | |
| __STATIC_INLINE int32x4_t __arm_vec_sqrt_q31_neon(int32x4_t vec)
 | |
| {
 | |
|   float32x4_t temp;
 | |
| 
 | |
|   temp = vcvtq_n_f32_s32(vec,31);
 | |
|   temp = __arm_vec_sqrt_f32_neon(temp);
 | |
|   return(vcvtq_n_s32_f32(temp,31));
 | |
| }
 | |
| 
 | |
| #endif /*  (defined(ARM_MATH_NEON) || defined(ARM_MATH_NEON_EXPERIMENTAL)) && !defined(ARM_MATH_AUTOVECTORIZE) */
 | |
| 
 | |
| #ifdef   __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #endif /* _ARM_VEC_MATH_H */
 | |
| 
 | |
| /**
 | |
|  *
 | |
|  * End of file.
 | |
|  */
 | 
