mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-30 09:22:06 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			282 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			282 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /******************************************************************************
 | |
|  * @file     svm_functions_f16.h
 | |
|  * @brief    Public header file for CMSIS DSP Library
 | |
|  * @version  V1.10.0
 | |
|  * @date     08 July 2021
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  ******************************************************************************/
 | |
| /*
 | |
|  * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
|  
 | |
| #ifndef _SVM_FUNCTIONS_F16_H_
 | |
| #define _SVM_FUNCTIONS_F16_H_
 | |
| 
 | |
| #include "arm_math_types_f16.h"
 | |
| #include "arm_math_memory.h"
 | |
| 
 | |
| #include "dsp/none.h"
 | |
| #include "dsp/utils.h"
 | |
| #include "dsp/svm_defines.h"
 | |
| 
 | |
| 
 | |
| #ifdef   __cplusplus
 | |
| extern "C"
 | |
| {
 | |
| #endif
 | |
| 
 | |
| #if defined(ARM_FLOAT16_SUPPORTED)
 | |
| 
 | |
| #define STEP(x) (x) <= 0 ? 0 : 1
 | |
| 
 | |
| /**
 | |
|  * @defgroup groupSVM SVM Functions
 | |
|  * This set of functions is implementing SVM classification on 2 classes.
 | |
|  * The training must be done from scikit-learn. The parameters can be easily
 | |
|  * generated from the scikit-learn object. Some examples are given in
 | |
|  * DSP/Testing/PatternGeneration/SVM.py
 | |
|  *
 | |
|  * If more than 2 classes are needed, the functions in this folder 
 | |
|  * will have to be used, as building blocks, to do multi-class classification.
 | |
|  *
 | |
|  * No multi-class classification is provided in this SVM folder.
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @brief Instance structure for linear SVM prediction function.
 | |
|  */
 | |
| typedef struct
 | |
| {
 | |
|   uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
 | |
|   uint32_t        vectorDimension;        /**< Dimension of vector space */
 | |
|   float16_t       intercept;              /**< Intercept */
 | |
|   const float16_t *dualCoefficients;      /**< Dual coefficients */
 | |
|   const float16_t *supportVectors;        /**< Support vectors */
 | |
|   const int32_t   *classes;               /**< The two SVM classes */
 | |
| } arm_svm_linear_instance_f16;
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @brief Instance structure for polynomial SVM prediction function.
 | |
|  */
 | |
| typedef struct
 | |
| {
 | |
|   uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
 | |
|   uint32_t        vectorDimension;        /**< Dimension of vector space */
 | |
|   float16_t       intercept;              /**< Intercept */
 | |
|   const float16_t *dualCoefficients;      /**< Dual coefficients */
 | |
|   const float16_t *supportVectors;        /**< Support vectors */
 | |
|   const int32_t   *classes;               /**< The two SVM classes */
 | |
|   int32_t         degree;                 /**< Polynomial degree */
 | |
|   float16_t       coef0;                  /**< Polynomial constant */
 | |
|   float16_t       gamma;                  /**< Gamma factor */
 | |
| } arm_svm_polynomial_instance_f16;
 | |
| 
 | |
| /**
 | |
|  * @brief Instance structure for rbf SVM prediction function.
 | |
|  */
 | |
| typedef struct
 | |
| {
 | |
|   uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
 | |
|   uint32_t        vectorDimension;        /**< Dimension of vector space */
 | |
|   float16_t       intercept;              /**< Intercept */
 | |
|   const float16_t *dualCoefficients;      /**< Dual coefficients */
 | |
|   const float16_t *supportVectors;        /**< Support vectors */
 | |
|   const int32_t   *classes;               /**< The two SVM classes */
 | |
|   float16_t       gamma;                  /**< Gamma factor */
 | |
| } arm_svm_rbf_instance_f16;
 | |
| 
 | |
| /**
 | |
|  * @brief Instance structure for sigmoid SVM prediction function.
 | |
|  */
 | |
| typedef struct
 | |
| {
 | |
|   uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
 | |
|   uint32_t        vectorDimension;        /**< Dimension of vector space */
 | |
|   float16_t       intercept;              /**< Intercept */
 | |
|   const float16_t *dualCoefficients;      /**< Dual coefficients */
 | |
|   const float16_t *supportVectors;        /**< Support vectors */
 | |
|   const int32_t   *classes;               /**< The two SVM classes */
 | |
|   float16_t       coef0;                  /**< Independent constant */
 | |
|   float16_t       gamma;                  /**< Gamma factor */
 | |
| } arm_svm_sigmoid_instance_f16;
 | |
| 
 | |
| /**
 | |
|  * @brief        SVM linear instance init function
 | |
|  * @param[in]    S                      Parameters for SVM functions
 | |
|  * @param[in]    nbOfSupportVectors     Number of support vectors
 | |
|  * @param[in]    vectorDimension        Dimension of vector space
 | |
|  * @param[in]    intercept              Intercept
 | |
|  * @param[in]    dualCoefficients       Array of dual coefficients
 | |
|  * @param[in]    supportVectors         Array of support vectors
 | |
|  * @param[in]    classes                Array of 2 classes ID
 | |
|  * @return none.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| void arm_svm_linear_init_f16(arm_svm_linear_instance_f16 *S, 
 | |
|   uint32_t nbOfSupportVectors,
 | |
|   uint32_t vectorDimension,
 | |
|   float16_t intercept,
 | |
|   const float16_t *dualCoefficients,
 | |
|   const float16_t *supportVectors,
 | |
|   const int32_t  *classes);
 | |
| 
 | |
| /**
 | |
|  * @brief SVM linear prediction
 | |
|  * @param[in]    S          Pointer to an instance of the linear SVM structure.
 | |
|  * @param[in]    in         Pointer to input vector
 | |
|  * @param[out]   pResult    Decision value
 | |
|  * @return none.
 | |
|  *
 | |
|  */
 | |
|   
 | |
| void arm_svm_linear_predict_f16(const arm_svm_linear_instance_f16 *S, 
 | |
|    const float16_t * in, 
 | |
|    int32_t * pResult);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @brief        SVM polynomial instance init function
 | |
|  * @param[in]    S                      points to an instance of the polynomial SVM structure.
 | |
|  * @param[in]    nbOfSupportVectors     Number of support vectors
 | |
|  * @param[in]    vectorDimension        Dimension of vector space
 | |
|  * @param[in]    intercept              Intercept
 | |
|  * @param[in]    dualCoefficients       Array of dual coefficients
 | |
|  * @param[in]    supportVectors         Array of support vectors
 | |
|  * @param[in]    classes                Array of 2 classes ID
 | |
|  * @param[in]    degree                 Polynomial degree
 | |
|  * @param[in]    coef0                  coeff0 (scikit-learn terminology)
 | |
|  * @param[in]    gamma                  gamma (scikit-learn terminology)
 | |
|  * @return none.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| void arm_svm_polynomial_init_f16(arm_svm_polynomial_instance_f16 *S, 
 | |
|   uint32_t nbOfSupportVectors,
 | |
|   uint32_t vectorDimension,
 | |
|   float16_t intercept,
 | |
|   const float16_t *dualCoefficients,
 | |
|   const float16_t *supportVectors,
 | |
|   const int32_t   *classes,
 | |
|   int32_t      degree,
 | |
|   float16_t coef0,
 | |
|   float16_t gamma
 | |
|   );
 | |
| 
 | |
| /**
 | |
|  * @brief SVM polynomial prediction
 | |
|  * @param[in]    S          Pointer to an instance of the polynomial SVM structure.
 | |
|  * @param[in]    in         Pointer to input vector
 | |
|  * @param[out]   pResult    Decision value
 | |
|  * @return none.
 | |
|  *
 | |
|  */
 | |
| void arm_svm_polynomial_predict_f16(const arm_svm_polynomial_instance_f16 *S, 
 | |
|    const float16_t * in, 
 | |
|    int32_t * pResult);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @brief        SVM radial basis function instance init function
 | |
|  * @param[in]    S                      points to an instance of the polynomial SVM structure.
 | |
|  * @param[in]    nbOfSupportVectors     Number of support vectors
 | |
|  * @param[in]    vectorDimension        Dimension of vector space
 | |
|  * @param[in]    intercept              Intercept
 | |
|  * @param[in]    dualCoefficients       Array of dual coefficients
 | |
|  * @param[in]    supportVectors         Array of support vectors
 | |
|  * @param[in]    classes                Array of 2 classes ID
 | |
|  * @param[in]    gamma                  gamma (scikit-learn terminology)
 | |
|  * @return none.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| void arm_svm_rbf_init_f16(arm_svm_rbf_instance_f16 *S, 
 | |
|   uint32_t nbOfSupportVectors,
 | |
|   uint32_t vectorDimension,
 | |
|   float16_t intercept,
 | |
|   const float16_t *dualCoefficients,
 | |
|   const float16_t *supportVectors,
 | |
|   const int32_t   *classes,
 | |
|   float16_t gamma
 | |
|   );
 | |
| 
 | |
| /**
 | |
|  * @brief SVM rbf prediction
 | |
|  * @param[in]    S         Pointer to an instance of the rbf SVM structure.
 | |
|  * @param[in]    in        Pointer to input vector
 | |
|  * @param[out]   pResult   decision value
 | |
|  * @return none.
 | |
|  *
 | |
|  */
 | |
| void arm_svm_rbf_predict_f16(const arm_svm_rbf_instance_f16 *S, 
 | |
|    const float16_t * in, 
 | |
|    int32_t * pResult);
 | |
| 
 | |
| /**
 | |
|  * @brief        SVM sigmoid instance init function
 | |
|  * @param[in]    S                      points to an instance of the rbf SVM structure.
 | |
|  * @param[in]    nbOfSupportVectors     Number of support vectors
 | |
|  * @param[in]    vectorDimension        Dimension of vector space
 | |
|  * @param[in]    intercept              Intercept
 | |
|  * @param[in]    dualCoefficients       Array of dual coefficients
 | |
|  * @param[in]    supportVectors         Array of support vectors
 | |
|  * @param[in]    classes                Array of 2 classes ID
 | |
|  * @param[in]    coef0                  coeff0 (scikit-learn terminology)
 | |
|  * @param[in]    gamma                  gamma (scikit-learn terminology)
 | |
|  * @return none.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| void arm_svm_sigmoid_init_f16(arm_svm_sigmoid_instance_f16 *S, 
 | |
|   uint32_t nbOfSupportVectors,
 | |
|   uint32_t vectorDimension,
 | |
|   float16_t intercept,
 | |
|   const float16_t *dualCoefficients,
 | |
|   const float16_t *supportVectors,
 | |
|   const int32_t   *classes,
 | |
|   float16_t coef0,
 | |
|   float16_t gamma
 | |
|   );
 | |
| 
 | |
| /**
 | |
|  * @brief SVM sigmoid prediction
 | |
|  * @param[in]    S        Pointer to an instance of the rbf SVM structure.
 | |
|  * @param[in]    in       Pointer to input vector
 | |
|  * @param[out]   pResult  Decision value
 | |
|  * @return none.
 | |
|  *
 | |
|  */
 | |
| void arm_svm_sigmoid_predict_f16(const arm_svm_sigmoid_instance_f16 *S, 
 | |
|    const float16_t * in, 
 | |
|    int32_t * pResult);
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif /*defined(ARM_FLOAT16_SUPPORTED)*/
 | |
| #ifdef   __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif /* ifndef _SVM_FUNCTIONS_F16_H_ */
 | 
