mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-31 01:42:04 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			265 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_vlog_q15
 | |
|  * Description:  Q15 vector log
 | |
|  *
 | |
|  * $Date:        19 July 2021
 | |
|  * $Revision:    V1.10.0
 | |
|  *
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "dsp/fast_math_functions.h"
 | |
| 
 | |
| 
 | |
| #define LOG_Q15_ACCURACY 15
 | |
| 
 | |
| /* Bit to represent the normalization factor
 | |
|    It is Ceiling[Log2[LOG_Q15_ACCURACY]] of the previous value.
 | |
|    The Log2 algorithm is assuming that the value x is
 | |
|    1 <= x < 2.
 | |
| 
 | |
|    But input value could be as small a 2^-LOG_Q15_ACCURACY
 | |
|    which would give an integer part of -15.
 | |
| */
 | |
| #define LOG_Q15_INTEGER_PART 4
 | |
| 
 | |
| /* 2.0 in q14 */
 | |
| #define LOQ_Q15_THRESHOLD (1u << LOG_Q15_ACCURACY)
 | |
| 
 | |
| /* HALF */
 | |
| #define LOQ_Q15_Q16_HALF LOQ_Q15_THRESHOLD
 | |
| #define LOQ_Q15_Q14_HALF (LOQ_Q15_Q16_HALF >> 2)
 | |
| 
 | |
| 
 | |
| /* 1.0 / Log2[Exp[1]] in q15 */
 | |
| #define LOG_Q15_INVLOG2EXP 0x58b9u
 | |
| 
 | |
| 
 | |
| /* Clay Turner algorithm */
 | |
| static uint16_t arm_scalar_log_q15(uint16_t src)
 | |
| {
 | |
|    int i;
 | |
| 
 | |
|    int16_t c = __CLZ(src)-16;
 | |
|    int16_t normalization=0;
 | |
| 
 | |
|    /* 0.5 in q11 */
 | |
|    uint16_t inc = LOQ_Q15_Q16_HALF >> (LOG_Q15_INTEGER_PART + 1);
 | |
| 
 | |
|    /* Will compute y = log2(x) for 1 <= x < 2.0 */
 | |
|    uint16_t x;
 | |
| 
 | |
|    /* q11 */
 | |
|    uint16_t y=0;
 | |
| 
 | |
|    /* q11 */
 | |
|    int16_t tmp;
 | |
| 
 | |
| 
 | |
|    /* Normalize and convert to q14 format */
 | |
|    x = src;
 | |
|    if ((c-1) < 0)
 | |
|    {
 | |
|      x = x >> (1-c);
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|      x = x << (c-1);
 | |
|    }
 | |
|    normalization = c;
 | |
| 
 | |
| 
 | |
| 
 | |
|    /* Compute the Log2. Result is in q11 instead of q16
 | |
|       because we know 0 <= y < 1.0 but
 | |
|       we want a result allowing to do a
 | |
|       product on int16 rather than having to go
 | |
|       through int32
 | |
|    */
 | |
|    for(i = 0; i < LOG_Q15_ACCURACY ; i++)
 | |
|    {
 | |
|       x = (((int32_t)x*x)) >> (LOG_Q15_ACCURACY - 1);
 | |
| 
 | |
|       if (x >= LOQ_Q15_THRESHOLD)
 | |
|       {
 | |
|          y += inc ;
 | |
|          x = x >> 1;
 | |
|       }
 | |
|       inc = inc >> 1;
 | |
|    }
 | |
| 
 | |
| 
 | |
|    /*
 | |
|       Convert the Log2 to Log and apply normalization.
 | |
|       We compute (y - normalisation) * (1 / Log2[e]).
 | |
| 
 | |
|    */
 | |
| 
 | |
|    /* q11 */
 | |
|    //tmp = y - ((int32_t)normalization << (LOG_Q15_ACCURACY + 1));
 | |
|    tmp = (int16_t)y - (normalization << (LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART));
 | |
| 
 | |
|    /* q4.11 */
 | |
|    y = ((int32_t)tmp * LOG_Q15_INVLOG2EXP) >> 15;
 | |
| 
 | |
|    return(y);
 | |
| 
 | |
| }
 | |
| 
 | |
| #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| 
 | |
| q15x8_t vlogq_q15(q15x8_t src)
 | |
| {
 | |
| 
 | |
|    int i;
 | |
| 
 | |
|    int16x8_t c = vclzq_s16(src);
 | |
|    int16x8_t normalization = c;
 | |
| 
 | |
| 
 | |
|    /* 0.5 in q11 */
 | |
|    uint16_t inc  = LOQ_Q15_Q16_HALF >> (LOG_Q15_INTEGER_PART + 1);
 | |
| 
 | |
|    /* Will compute y = log2(x) for 1 <= x < 2.0 */
 | |
|    uint16x8_t x;
 | |
| 
 | |
| 
 | |
|    /* q11 */
 | |
|    uint16x8_t y = vdupq_n_u16(0);
 | |
| 
 | |
| 
 | |
|    /* q11 */
 | |
|    int16x8_t vtmp;
 | |
| 
 | |
| 
 | |
|    mve_pred16_t p;
 | |
| 
 | |
|    /* Normalize and convert to q14 format */
 | |
| 
 | |
| 
 | |
|    vtmp = vsubq_n_s16(c,1);
 | |
|    x = vshlq_u16((uint16x8_t)src,vtmp);
 | |
| 
 | |
| 
 | |
|    /* Compute the Log2. Result is in q11 instead of q16
 | |
|       because we know 0 <= y < 1.0 but
 | |
|       we want a result allowing to do a
 | |
|       product on int16 rather than having to go
 | |
|       through int32
 | |
|    */
 | |
|    for(i = 0; i < LOG_Q15_ACCURACY ; i++)
 | |
|    {
 | |
|       x = vmulhq_u16(x,x);
 | |
|       x = vshlq_n_u16(x,2);
 | |
| 
 | |
| 
 | |
|       p = vcmphiq_u16(x,vdupq_n_u16(LOQ_Q15_THRESHOLD));
 | |
|       y = vaddq_m_n_u16(y, y,inc,p);
 | |
|       x = vshrq_m_n_u16(x,x,1,p);
 | |
| 
 | |
|       inc = inc >> 1;
 | |
|    }
 | |
| 
 | |
| 
 | |
|    /*
 | |
|       Convert the Log2 to Log and apply normalization.
 | |
|       We compute (y - normalisation) * (1 / Log2[e]).
 | |
| 
 | |
|    */
 | |
| 
 | |
|    /* q11 */
 | |
|    // tmp = (int16_t)y - (normalization << (LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART));
 | |
|    vtmp = vshlq_n_s16(normalization,LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART);
 | |
|    vtmp = vsubq_s16((int16x8_t)y,vtmp);
 | |
| 
 | |
| 
 | |
| 
 | |
|    /* q4.11 */
 | |
|    // y = ((int32_t)tmp * LOG_Q15_INVLOG2EXP) >> 15;
 | |
|    vtmp = vqdmulhq_n_s16(vtmp,LOG_Q15_INVLOG2EXP);
 | |
| 
 | |
|    return(vtmp);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|   @ingroup groupFastMath
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @addtogroup vlog
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @brief         q15 vector of log values.
 | |
|   @param[in]     pSrc       points to the input vector in q15
 | |
|   @param[out]    pDst       points to the output vector in q4.11
 | |
|   @param[in]     blockSize  number of samples in each vector
 | |
|   @return        none
 | |
| 
 | |
|  */
 | |
| 
 | |
| void arm_vlog_q15(
 | |
|   const q15_t * pSrc,
 | |
|         q15_t * pDst,
 | |
|         uint32_t blockSize)
 | |
| {
 | |
|   uint32_t  blkCnt;           /* loop counters */
 | |
| 
 | |
|   #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
|   q15x8_t src;
 | |
|   q15x8_t dst;
 | |
| 
 | |
|   blkCnt = blockSize >> 3;
 | |
| 
 | |
|   while (blkCnt > 0U)
 | |
|   {
 | |
|       src = vld1q(pSrc);
 | |
|       dst = vlogq_q15(src);
 | |
|       vst1q(pDst, dst);
 | |
| 
 | |
|       pSrc += 8;
 | |
|       pDst += 8;
 | |
|       /* Decrement loop counter */
 | |
|       blkCnt--;
 | |
|   }
 | |
| 
 | |
|   blkCnt = blockSize & 7;
 | |
|   #else
 | |
|   blkCnt = blockSize;
 | |
|   #endif
 | |
| 
 | |
|   while (blkCnt > 0U)
 | |
|   {
 | |
|      *pDst++ = arm_scalar_log_q15(*pSrc++);
 | |
| 
 | |
|      /* Decrement loop counter */
 | |
|      blkCnt--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   @} end of vlog group
 | |
|  */
 | 
