mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-30 17:32:05 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			182 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			182 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_quaternion2rotation_f32.c
 | |
|  * Description:  Floating-point quaternion 2 rotation conversion
 | |
|  *
 | |
|  * $Date:        23 April 2021
 | |
|  * $Revision:    V1.9.0
 | |
|  *
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "dsp/quaternion_math_functions.h"
 | |
| #include <math.h>
 | |
| 
 | |
| /**
 | |
|   @ingroup groupQuaternionMath
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @defgroup QuatConv Quaternion conversions
 | |
| 
 | |
|   Conversions between quaternion and rotation representations.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @ingroup QuatConv
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @defgroup QuatRot Quaternion to Rotation
 | |
| 
 | |
|   Conversions from quaternion to rotation.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @addtogroup QuatRot
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|    @brief Conversion of quaternion to equivalent rotation matrix.
 | |
|    @param[in]       pInputQuaternions points to an array of normalized quaternions
 | |
|    @param[out]      pOutputRotations points to an array of 3x3 rotations (in row order)
 | |
|    @param[in]       nbQuaternions number of quaternions in the array
 | |
|    @return none.
 | |
|   
 | |
|    @par
 | |
|    Format of rotation matrix
 | |
|    
 | |
|    
 | |
|    The quaternion a + ib + jc + kd is converted into rotation matrix:
 | |
|    <pre>
 | |
|      a^2 + b^2 - c^2 - d^2                 2bc - 2ad                 2bd + 2ac
 | |
|                  2bc + 2ad     a^2 - b^2 + c^2 - d^2                 2cd - 2ab
 | |
|                  2bd - 2ac                 2cd + 2ab     a^2 - b^2 - c^2 + d^2
 | |
|    </pre>
 | |
|    Rotation matrix is saved in row order : R00 R01 R02 R10 R11 R12 R20 R21 R22
 | |
|  */
 | |
| 
 | |
| #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| #include "arm_helium_utils.h"
 | |
| 
 | |
| void arm_quaternion2rotation_f32(const float32_t *pInputQuaternions, 
 | |
|     float32_t *pOutputRotations, 
 | |
|     uint32_t nbQuaternions)
 | |
| {
 | |
|   f32x4_t vec0,vec1, vec2 ,vec3;
 | |
|   float32_t q2q3, tmp1, tmp2 ;
 | |
| 
 | |
|   for(uint32_t nb=0; nb < nbQuaternions; nb++)
 | |
|   {
 | |
| 
 | |
|     // q0 q1 q2 q3
 | |
|     vec0 = vld1q(pInputQuaternions);
 | |
| 
 | |
|     // q0^2 q1^2 q2^2 q3^2
 | |
|     vec1 = vmulq(vec0,vec0);
 | |
| 
 | |
|     // q0^2 q1q0 q2q0 q3q0
 | |
|     vec2 = vmulq_n_f32(vec0, vgetq_lane(vec0,0));
 | |
| 
 | |
|     // 2 (q0^2 q1q0 q2q0 q3q0)
 | |
|     vec2 = vmulq_n_f32(vec2, 2.0f);
 | |
|     
 | |
| 
 | |
|     // 2 q2q3
 | |
|     q2q3 = vgetq_lane(vec0,2) * vgetq_lane(vec0,3);
 | |
|     q2q3 = q2q3 * 2.0f;
 | |
| 
 | |
|     // 2 (q0q1 q1^2 q2q1 q3q1)
 | |
|     vec3 = vmulq_n_f32(vec0, vgetq_lane(vec0,1));
 | |
|     vec3 = vmulq_n_f32(vec3, 2.0f);
 | |
|    
 | |
| 
 | |
|     
 | |
|     vec0 = vsetq_lane(vgetq_lane(vec1,0) + vgetq_lane(vec1,1),vec0,0);
 | |
|     vec0 = vsetq_lane(vgetq_lane(vec0,0) - vgetq_lane(vec1,2),vec0,0);
 | |
|     vec0 = vsetq_lane(vgetq_lane(vec0,0) - vgetq_lane(vec1,3),vec0,0);
 | |
|     vec0 = vsetq_lane(vgetq_lane(vec3,2) - vgetq_lane(vec2,3),vec0,1);
 | |
|     vec0 = vsetq_lane(vgetq_lane(vec3,3) + vgetq_lane(vec2,2),vec0,2);
 | |
|     vec0 = vsetq_lane(vgetq_lane(vec3,2) + vgetq_lane(vec2,3),vec0,3);
 | |
| 
 | |
|     vst1q(pOutputRotations, vec0);
 | |
|     pOutputRotations += 4;
 | |
| 
 | |
|     tmp1 = vgetq_lane(vec1,0) - vgetq_lane(vec1,1);
 | |
|     tmp2 = vgetq_lane(vec1,2) - vgetq_lane(vec1,3);
 | |
| 
 | |
|   
 | |
|     vec0 = vsetq_lane(tmp1 + tmp2,vec0,0);
 | |
|     vec0 = vsetq_lane(q2q3 - vgetq_lane(vec2,1) ,vec0,1);
 | |
|     vec0 = vsetq_lane(vgetq_lane(vec3,3) - vgetq_lane(vec2,2),vec0,2);
 | |
|     vec0 = vsetq_lane(q2q3 + vgetq_lane(vec2,1) ,vec0,3);
 | |
| 
 | |
|     vst1q(pOutputRotations, vec0);
 | |
|     pOutputRotations += 4;
 | |
| 
 | |
|     *pOutputRotations = tmp1 - tmp2;
 | |
|     pOutputRotations ++;
 | |
| 
 | |
|     pInputQuaternions += 4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #else
 | |
| void arm_quaternion2rotation_f32(const float32_t *pInputQuaternions, 
 | |
|     float32_t *pOutputRotations, 
 | |
|     uint32_t nbQuaternions)
 | |
| {
 | |
|    uint32_t nb;
 | |
|    for(nb=0; nb < nbQuaternions; nb++)
 | |
|    {
 | |
|         float32_t q00 = SQ(pInputQuaternions[0 + nb * 4]);
 | |
|         float32_t q11 = SQ(pInputQuaternions[1 + nb * 4]);
 | |
|         float32_t q22 = SQ(pInputQuaternions[2 + nb * 4]);
 | |
|         float32_t q33 = SQ(pInputQuaternions[3 + nb * 4]);
 | |
|         float32_t q01 =  pInputQuaternions[0 + nb * 4]*pInputQuaternions[1 + nb * 4];
 | |
|         float32_t q02 =  pInputQuaternions[0 + nb * 4]*pInputQuaternions[2 + nb * 4];
 | |
|         float32_t q03 =  pInputQuaternions[0 + nb * 4]*pInputQuaternions[3 + nb * 4];
 | |
|         float32_t q12 =  pInputQuaternions[1 + nb * 4]*pInputQuaternions[2 + nb * 4];
 | |
|         float32_t q13 =  pInputQuaternions[1 + nb * 4]*pInputQuaternions[3 + nb * 4];
 | |
|         float32_t q23 =  pInputQuaternions[2 + nb * 4]*pInputQuaternions[3 + nb * 4];
 | |
| 
 | |
|         float32_t xx = q00 + q11 - q22 - q33;
 | |
|         float32_t yy = q00 - q11 + q22 - q33;
 | |
|         float32_t zz = q00 - q11 - q22 + q33;
 | |
|         float32_t xy = 2*(q12 - q03);
 | |
|         float32_t xz = 2*(q13 + q02);
 | |
|         float32_t yx = 2*(q12 + q03);
 | |
|         float32_t yz = 2*(q23 - q01);
 | |
|         float32_t zx = 2*(q13 - q02);
 | |
|         float32_t zy = 2*(q23 + q01);
 | |
| 
 | |
|         pOutputRotations[0 + nb * 9] = xx; pOutputRotations[1 + nb * 9] = xy; pOutputRotations[2 + nb * 9] = xz;
 | |
|         pOutputRotations[3 + nb * 9] = yx; pOutputRotations[4 + nb * 9] = yy; pOutputRotations[5 + nb * 9] = yz;
 | |
|         pOutputRotations[6 + nb * 9] = zx; pOutputRotations[7 + nb * 9] = zy; pOutputRotations[8 + nb * 9] = zz;
 | |
|    }
 | |
| }
 | |
| #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
 | |
| 
 | |
| /**
 | |
|   @} end of QuatRot group
 | |
|  */
 | 
