mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-31 09:52:05 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			226 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			226 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_rotation2quaternion_f32.c
 | |
|  * Description:  Floating-point rotation to quaternion conversion
 | |
|  *
 | |
|  * $Date:        23 April 2021
 | |
|  * $Revision:    V1.9.0
 | |
|  *
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "dsp/quaternion_math_functions.h"
 | |
| #include <math.h>
 | |
| 
 | |
| #define RI(x,y) r[(3*(x) + (y))]
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @ingroup QuatConv
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @defgroup RotQuat Rotation to Quaternion
 | |
| 
 | |
|   Conversions from rotation to quaternion.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @addtogroup RotQuat
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @brief Conversion of a rotation matrix to an equivalent quaternion.
 | |
|  * @param[in]       pInputRotations points to an array 3x3 rotation matrix (in row order)
 | |
|  * @param[out]      pOutputQuaternions points to an array quaternions
 | |
|  * @param[in]       nbQuaternions number of quaternions in the array
 | |
|  * @return none.
 | |
|  *
 | |
|  * q and -q are representing the same rotation. This ambiguity must be taken into
 | |
|  * account when using the output of this function.
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| #include "arm_helium_utils.h"
 | |
| 
 | |
| #define R00  vgetq_lane(q1,0)
 | |
| #define R01  vgetq_lane(q1,1)
 | |
| #define R02  vgetq_lane(q1,2)
 | |
| #define R10  vgetq_lane(q1,3)
 | |
| #define R11  vgetq_lane(q2,0)
 | |
| #define R12  vgetq_lane(q2,1)
 | |
| #define R20  vgetq_lane(q2,2)
 | |
| #define R21  vgetq_lane(q2,3)
 | |
| #define R22  ro22
 | |
| 
 | |
| void arm_rotation2quaternion_f32(const float32_t *pInputRotations, 
 | |
|     float32_t *pOutputQuaternions,  
 | |
|     uint32_t nbQuaternions)
 | |
| {
 | |
|    float32_t ro22, trace;
 | |
|    f32x4_t q1,q2, q; 
 | |
| 
 | |
|    float32_t doubler;
 | |
|    float32_t s;
 | |
| 
 | |
|    q = vdupq_n_f32(0.0f);
 | |
| 
 | |
|    for(uint32_t nb=0; nb < nbQuaternions; nb++)
 | |
|    {
 | |
|       q1 = vld1q(pInputRotations);
 | |
|       pInputRotations += 4;
 | |
| 
 | |
|       q2 = vld1q(pInputRotations);
 | |
|       pInputRotations += 4;
 | |
| 
 | |
|       ro22 = *pInputRotations++;
 | |
| 
 | |
|       trace = R00 + R11 + R22;
 | |
| 
 | |
| 
 | |
|       if (trace > 0)
 | |
|       {
 | |
|         (void)arm_sqrt_f32(trace + 1.0f, &doubler) ; // invs=4*qw
 | |
|         doubler = 2.0f*doubler;
 | |
|         s = 1.0f / doubler;
 | |
| 
 | |
|         q1 = vmulq_n_f32(q1,s);
 | |
|         q2 = vmulq_n_f32(q2,s);
 | |
| 
 | |
|         q[0] = 0.25f * doubler;
 | |
|         q[1] = R21 - R12;
 | |
|         q[2] = R02 - R20;
 | |
|         q[3] = R10 - R01;
 | |
|       }
 | |
|       else if ((R00 > R11) && (R00 > R22) )
 | |
|       {
 | |
|         (void)arm_sqrt_f32(1.0f + R00 - R11 - R22,&doubler); // invs=4*qx
 | |
|         doubler = 2.0f*doubler;
 | |
|         s = 1.0f / doubler;
 | |
| 
 | |
|         q1 = vmulq_n_f32(q1,s);
 | |
|         q2 = vmulq_n_f32(q2,s);
 | |
| 
 | |
|         q[0] = R21 - R12;
 | |
|         q[1] = 0.25f * doubler;
 | |
|         q[2] = R01 + R10;
 | |
|         q[3] = R02 + R20;
 | |
|       }
 | |
|       else if (R11 > R22)
 | |
|       {
 | |
|         (void)arm_sqrt_f32(1.0f + R11 - R00 - R22,&doubler); // invs=4*qy
 | |
|         doubler = 2.0f*doubler;
 | |
|         s = 1.0f / doubler;
 | |
| 
 | |
|         q1 = vmulq_n_f32(q1,s);
 | |
|         q2 = vmulq_n_f32(q2,s);
 | |
| 
 | |
|         q[0] = R02 - R20;
 | |
|         q[1] = R01 + R10;
 | |
|         q[2] = 0.25f * doubler;
 | |
|         q[3] = R12 + R21;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         (void)arm_sqrt_f32(1.0f + R22 - R00 - R11,&doubler); // invs=4*qz
 | |
|         doubler = 2.0f*doubler;
 | |
|         s = 1.0f / doubler;
 | |
| 
 | |
|         q1 = vmulq_n_f32(q1,s);
 | |
|         q2 = vmulq_n_f32(q2,s);
 | |
| 
 | |
|         q[0] = R10 - R01;
 | |
|         q[1] = R02 + R20;
 | |
|         q[2] = R12 + R21;
 | |
|         q[3] = 0.25f * doubler;
 | |
|       }
 | |
| 
 | |
|       vst1q(pOutputQuaternions, q);
 | |
|       pOutputQuaternions += 4;
 | |
| 
 | |
|    }
 | |
| }
 | |
| 
 | |
| #else
 | |
| void arm_rotation2quaternion_f32(const float32_t *pInputRotations, 
 | |
|     float32_t *pOutputQuaternions,  
 | |
|     uint32_t nbQuaternions)
 | |
| {
 | |
|    uint32_t nb;
 | |
|    for(nb=0; nb < nbQuaternions; nb++)
 | |
|    {
 | |
|        const float32_t *r=&pInputRotations[nb*9];
 | |
|        float32_t *q=&pOutputQuaternions[nb*4];
 | |
| 
 | |
|        float32_t trace = RI(0,0) + RI(1,1) + RI(2,2);
 | |
| 
 | |
|        float32_t doubler;
 | |
|        float32_t s;
 | |
| 
 | |
| 
 | |
| 
 | |
|       if (trace > 0.0f)
 | |
|       {
 | |
|         doubler = sqrtf(trace + 1.0f) * 2.0f; // invs=4*qw
 | |
|         s = 1.0f / doubler;
 | |
|         q[0] = 0.25f * doubler;
 | |
|         q[1] = (RI(2,1) - RI(1,2)) * s;
 | |
|         q[2] = (RI(0,2) - RI(2,0)) * s;
 | |
|         q[3] = (RI(1,0) - RI(0,1)) * s;
 | |
|       }
 | |
|       else if ((RI(0,0) > RI(1,1)) && (RI(0,0) > RI(2,2)) )
 | |
|       {
 | |
|         doubler = sqrtf(1.0f + RI(0,0) - RI(1,1) - RI(2,2)) * 2.0f; // invs=4*qx
 | |
|         s = 1.0f / doubler;
 | |
|         q[0] = (RI(2,1) - RI(1,2)) * s;
 | |
|         q[1] = 0.25f * doubler;
 | |
|         q[2] = (RI(0,1) + RI(1,0)) * s;
 | |
|         q[3] = (RI(0,2) + RI(2,0)) * s;
 | |
|       }
 | |
|       else if (RI(1,1) > RI(2,2))
 | |
|       {
 | |
|         doubler = sqrtf(1.0f + RI(1,1) - RI(0,0) - RI(2,2)) * 2.0f; // invs=4*qy
 | |
|         s = 1.0f / doubler;
 | |
|         q[0] = (RI(0,2) - RI(2,0)) * s;
 | |
|         q[1] = (RI(0,1) + RI(1,0)) * s;
 | |
|         q[2] = 0.25f * doubler;
 | |
|         q[3] = (RI(1,2) + RI(2,1)) * s;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         doubler = sqrtf(1.0f + RI(2,2) - RI(0,0) - RI(1,1)) * 2.0f; // invs=4*qz
 | |
|         s = 1.0f / doubler;
 | |
|         q[0] = (RI(1,0) - RI(0,1)) * s;
 | |
|         q[1] = (RI(0,2) + RI(2,0)) * s;
 | |
|         q[2] = (RI(1,2) + RI(2,1)) * s;
 | |
|         q[3] = 0.25f * doubler;
 | |
|       }
 | |
| 
 | |
|     }
 | |
| }
 | |
| #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
 | |
| 
 | |
| /**
 | |
|   @} end of RotQuat group
 | |
|  */
 | 
