mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-30 17:32:05 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			848 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			848 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_cfft_q31.c
 | |
|  * Description:  Combined Radix Decimation in Frequency CFFT fixed point processing function
 | |
|  *
 | |
|  * $Date:        23 April 2021
 | |
|  * $Revision:    V1.9.0
 | |
|  *
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "dsp/transform_functions.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| #include "arm_vec_fft.h"
 | |
| 
 | |
| 
 | |
| static void _arm_radix4_butterfly_q31_mve(
 | |
|     const arm_cfft_instance_q31 * S,
 | |
|     q31_t   *pSrc,
 | |
|     uint32_t fftLen)
 | |
| {
 | |
|     q31x4_t vecTmp0, vecTmp1;
 | |
|     q31x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
 | |
|     q31x4_t vecA, vecB, vecC, vecD;
 | |
|     uint32_t  blkCnt;
 | |
|     uint32_t  n1, n2;
 | |
|     uint32_t  stage = 0;
 | |
|     int32_t  iter = 1;
 | |
|     static const int32_t strides[4] = {
 | |
|         (0 - 16) * (int32_t)sizeof(q31_t *), (1 - 16) * (int32_t)sizeof(q31_t *),
 | |
|         (8 - 16) * (int32_t)sizeof(q31_t *), (9 - 16) * (int32_t)sizeof(q31_t *)
 | |
|     };
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Process first stages
 | |
|      * Each stage in middle stages provides two down scaling of the input
 | |
|      */
 | |
|     n2 = fftLen;
 | |
|     n1 = n2;
 | |
|     n2 >>= 2u;
 | |
| 
 | |
|     for (int k = fftLen / 4u; k > 1; k >>= 2u)
 | |
|     {
 | |
|         q31_t const *p_rearranged_twiddle_tab_stride2 =
 | |
|             &S->rearranged_twiddle_stride2[
 | |
|             S->rearranged_twiddle_tab_stride2_arr[stage]];
 | |
|         q31_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
 | |
|             S->rearranged_twiddle_tab_stride3_arr[stage]];
 | |
|         q31_t const *p_rearranged_twiddle_tab_stride1 =
 | |
|             &S->rearranged_twiddle_stride1[
 | |
|             S->rearranged_twiddle_tab_stride1_arr[stage]];
 | |
| 
 | |
|         q31_t * pBase = pSrc;
 | |
|         for (int i = 0; i < iter; i++)
 | |
|         {
 | |
|             q31_t    *inA = pBase;
 | |
|             q31_t    *inB = inA + n2 * CMPLX_DIM;
 | |
|             q31_t    *inC = inB + n2 * CMPLX_DIM;
 | |
|             q31_t    *inD = inC + n2 * CMPLX_DIM;
 | |
|             q31_t const *pW1 = p_rearranged_twiddle_tab_stride1;
 | |
|             q31_t const *pW2 = p_rearranged_twiddle_tab_stride2;
 | |
|             q31_t const *pW3 = p_rearranged_twiddle_tab_stride3;
 | |
|             q31x4_t    vecW;
 | |
| 
 | |
| 
 | |
|             blkCnt = n2 / 2;
 | |
|             /*
 | |
|              * load 2 x q31 complex pair
 | |
|              */
 | |
|             vecA = vldrwq_s32(inA);
 | |
|             vecC = vldrwq_s32(inC);
 | |
|             while (blkCnt > 0U)
 | |
|             {
 | |
|                 vecB = vldrwq_s32(inB);
 | |
|                 vecD = vldrwq_s32(inD);
 | |
| 
 | |
|                 vecSum0 = vhaddq(vecA, vecC);
 | |
|                 vecDiff0 = vhsubq(vecA, vecC);
 | |
| 
 | |
|                 vecSum1 = vhaddq(vecB, vecD);
 | |
|                 vecDiff1 = vhsubq(vecB, vecD);
 | |
|                 /*
 | |
|                  * [ 1 1 1 1 ] * [ A B C D ]' .* 1
 | |
|                  */
 | |
|                 vecTmp0 = vhaddq(vecSum0, vecSum1);
 | |
|                 vst1q(inA, vecTmp0);
 | |
|                 inA += 4;
 | |
|                 /*
 | |
|                  * [ 1 -1 1 -1 ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = vhsubq(vecSum0, vecSum1);
 | |
|                 /*
 | |
|                  * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
 | |
|                  */
 | |
|                 vecW = vld1q(pW2);
 | |
|                 pW2 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
 | |
| 
 | |
|                 vst1q(inB, vecTmp1);
 | |
|                 inB += 4;
 | |
|                 /*
 | |
|                  * [ 1 -i -1 +i ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
 | |
|                 /*
 | |
|                  * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
 | |
|                  */
 | |
|                 vecW = vld1q(pW1);
 | |
|                 pW1 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
 | |
|                 vst1q(inC, vecTmp1);
 | |
|                 inC += 4;
 | |
|                 /*
 | |
|                  * [ 1 +i -1 -i ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
 | |
|                 /*
 | |
|                  * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
 | |
|                  */
 | |
|                 vecW = vld1q(pW3);
 | |
|                 pW3 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
 | |
|                 vst1q(inD, vecTmp1);
 | |
|                 inD += 4;
 | |
| 
 | |
|                 vecA = vldrwq_s32(inA);
 | |
|                 vecC = vldrwq_s32(inC);
 | |
| 
 | |
|                 blkCnt--;
 | |
|             }
 | |
|             pBase +=  CMPLX_DIM * n1;
 | |
|         }
 | |
|         n1 = n2;
 | |
|         n2 >>= 2u;
 | |
|         iter = iter << 2;
 | |
|         stage++;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * End of 1st stages process
 | |
|      * data is in 11.21(q21) format for the 1024 point as there are 3 middle stages
 | |
|      * data is in 9.23(q23) format for the 256 point as there are 2 middle stages
 | |
|      * data is in 7.25(q25) format for the 64 point as there are 1 middle stage
 | |
|      * data is in 5.27(q27) format for the 16 point as there are no middle stages
 | |
|      */
 | |
| 
 | |
|     /*
 | |
|      * start of Last stage process
 | |
|      */
 | |
|     uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
 | |
|     vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
 | |
| 
 | |
|     /*
 | |
|      * load scheduling
 | |
|      */
 | |
|     vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
 | |
|     vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
 | |
| 
 | |
|     blkCnt = (fftLen >> 3);
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         vecSum0 = vhaddq(vecA, vecC);
 | |
|         vecDiff0 = vhsubq(vecA, vecC);
 | |
| 
 | |
|         vecB = vldrwq_gather_base_s32(vecScGathAddr, 8);
 | |
|         vecD = vldrwq_gather_base_s32(vecScGathAddr, 24);
 | |
| 
 | |
|         vecSum1 = vhaddq(vecB, vecD);
 | |
|         vecDiff1 = vhsubq(vecB, vecD);
 | |
|         /*
 | |
|          * pre-load for next iteration
 | |
|          */
 | |
|         vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
 | |
|         vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
 | |
| 
 | |
|         vecTmp0 = vhaddq(vecSum0, vecSum1);
 | |
|         vstrwq_scatter_base_s32(vecScGathAddr, -64, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = vhsubq(vecSum0, vecSum1);
 | |
|         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
 | |
|         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 16, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
 | |
|         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 24, vecTmp0);
 | |
| 
 | |
|         blkCnt--;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * output is in 11.21(q21) format for the 1024 point
 | |
|      * output is in 9.23(q23) format for the 256 point
 | |
|      * output is in 7.25(q25) format for the 64 point
 | |
|      * output is in 5.27(q27) format for the 16 point
 | |
|      */
 | |
| }
 | |
| 
 | |
| 
 | |
| static void arm_cfft_radix4by2_q31_mve(const arm_cfft_instance_q31 *S, q31_t *pSrc, uint32_t fftLen)
 | |
| {
 | |
|     uint32_t     n2;
 | |
|     q31_t       *pIn0;
 | |
|     q31_t       *pIn1;
 | |
|     const q31_t *pCoef = S->pTwiddle;
 | |
|     uint32_t     blkCnt;
 | |
|     q31x4_t    vecIn0, vecIn1, vecSum, vecDiff;
 | |
|     q31x4_t    vecCmplxTmp, vecTw;
 | |
| 
 | |
|     n2 = fftLen >> 1;
 | |
|     pIn0 = pSrc;
 | |
|     pIn1 = pSrc + fftLen;
 | |
| 
 | |
|     blkCnt = n2 / 2;
 | |
| 
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         vecIn0 = vld1q_s32(pIn0);
 | |
|         vecIn1 = vld1q_s32(pIn1);
 | |
| 
 | |
|         vecIn0 = vecIn0 >> 1;
 | |
|         vecIn1 = vecIn1 >> 1;
 | |
|         vecSum = vhaddq(vecIn0, vecIn1);
 | |
|         vst1q(pIn0, vecSum);
 | |
|         pIn0 += 4;
 | |
| 
 | |
|         vecTw = vld1q_s32(pCoef);
 | |
|         pCoef += 4;
 | |
|         vecDiff = vhsubq(vecIn0, vecIn1);
 | |
| 
 | |
|         vecCmplxTmp = MVE_CMPLX_MULT_FX_AxConjB(vecDiff, vecTw, q31x4_t);
 | |
|         vst1q(pIn1, vecCmplxTmp);
 | |
|         pIn1 += 4;
 | |
| 
 | |
|         blkCnt--;
 | |
|     }
 | |
| 
 | |
|    _arm_radix4_butterfly_q31_mve(S, pSrc, n2);
 | |
| 
 | |
|    _arm_radix4_butterfly_q31_mve(S, pSrc + fftLen, n2);
 | |
| 
 | |
|     pIn0 = pSrc;
 | |
|     blkCnt = (fftLen << 1) >> 2;
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         vecIn0 = vld1q_s32(pIn0);
 | |
|         vecIn0 = vecIn0 << 1;
 | |
|         vst1q(pIn0, vecIn0);
 | |
|         pIn0 += 4;
 | |
|         blkCnt--;
 | |
|     }
 | |
|     /*
 | |
|      * tail
 | |
|      * (will be merged thru tail predication)
 | |
|      */
 | |
|     blkCnt = (fftLen << 1) & 3;
 | |
|     if (blkCnt > 0U)
 | |
|     {
 | |
|         mve_pred16_t p0 = vctp32q(blkCnt);
 | |
| 
 | |
|         vecIn0 = vld1q_s32(pIn0);
 | |
|         vecIn0 = vecIn0 << 1;
 | |
|         vstrwq_p(pIn0, vecIn0, p0);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| static void _arm_radix4_butterfly_inverse_q31_mve(
 | |
|     const arm_cfft_instance_q31 *S,
 | |
|     q31_t   *pSrc,
 | |
|     uint32_t fftLen)
 | |
| {
 | |
|     q31x4_t vecTmp0, vecTmp1;
 | |
|     q31x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
 | |
|     q31x4_t vecA, vecB, vecC, vecD;
 | |
|     uint32_t  blkCnt;
 | |
|     uint32_t  n1, n2;
 | |
|     uint32_t  stage = 0;
 | |
|     int32_t  iter = 1;
 | |
|     static const int32_t strides[4] = {
 | |
|         (0 - 16) * (int32_t)sizeof(q31_t *), (1 - 16) * (int32_t)sizeof(q31_t *),
 | |
|         (8 - 16) * (int32_t)sizeof(q31_t *), (9 - 16) * (int32_t)sizeof(q31_t *)
 | |
|     };
 | |
| 
 | |
|     /*
 | |
|      * Process first stages
 | |
|      * Each stage in middle stages provides two down scaling of the input
 | |
|      */
 | |
|     n2 = fftLen;
 | |
|     n1 = n2;
 | |
|     n2 >>= 2u;
 | |
| 
 | |
|     for (int k = fftLen / 4u; k > 1; k >>= 2u)
 | |
|     {
 | |
|         q31_t const *p_rearranged_twiddle_tab_stride2 =
 | |
|             &S->rearranged_twiddle_stride2[
 | |
|             S->rearranged_twiddle_tab_stride2_arr[stage]];
 | |
|         q31_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
 | |
|             S->rearranged_twiddle_tab_stride3_arr[stage]];
 | |
|         q31_t const *p_rearranged_twiddle_tab_stride1 =
 | |
|             &S->rearranged_twiddle_stride1[
 | |
|             S->rearranged_twiddle_tab_stride1_arr[stage]];
 | |
| 
 | |
|         q31_t * pBase = pSrc;
 | |
|         for (int i = 0; i < iter; i++)
 | |
|         {
 | |
|             q31_t    *inA = pBase;
 | |
|             q31_t    *inB = inA + n2 * CMPLX_DIM;
 | |
|             q31_t    *inC = inB + n2 * CMPLX_DIM;
 | |
|             q31_t    *inD = inC + n2 * CMPLX_DIM;
 | |
|             q31_t const *pW1 = p_rearranged_twiddle_tab_stride1;
 | |
|             q31_t const *pW2 = p_rearranged_twiddle_tab_stride2;
 | |
|             q31_t const *pW3 = p_rearranged_twiddle_tab_stride3;
 | |
|             q31x4_t    vecW;
 | |
| 
 | |
|             blkCnt = n2 / 2;
 | |
|             /*
 | |
|              * load 2 x q31 complex pair
 | |
|              */
 | |
|             vecA = vldrwq_s32(inA);
 | |
|             vecC = vldrwq_s32(inC);
 | |
|             while (blkCnt > 0U)
 | |
|             {
 | |
|                 vecB = vldrwq_s32(inB);
 | |
|                 vecD = vldrwq_s32(inD);
 | |
| 
 | |
|                 vecSum0 = vhaddq(vecA, vecC);
 | |
|                 vecDiff0 = vhsubq(vecA, vecC);
 | |
| 
 | |
|                 vecSum1 = vhaddq(vecB, vecD);
 | |
|                 vecDiff1 = vhsubq(vecB, vecD);
 | |
|                 /*
 | |
|                  * [ 1 1 1 1 ] * [ A B C D ]' .* 1
 | |
|                  */
 | |
|                 vecTmp0 = vhaddq(vecSum0, vecSum1);
 | |
|                 vst1q(inA, vecTmp0);
 | |
|                 inA += 4;
 | |
|                 /*
 | |
|                  * [ 1 -1 1 -1 ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = vhsubq(vecSum0, vecSum1);
 | |
|                 /*
 | |
|                  * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
 | |
|                  */
 | |
|                 vecW = vld1q(pW2);
 | |
|                 pW2 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
 | |
| 
 | |
|                 vst1q(inB, vecTmp1);
 | |
|                 inB += 4;
 | |
|                 /*
 | |
|                  * [ 1 -i -1 +i ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
 | |
|                 /*
 | |
|                  * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
 | |
|                  */
 | |
|                 vecW = vld1q(pW1);
 | |
|                 pW1 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
 | |
|                 vst1q(inC, vecTmp1);
 | |
|                 inC += 4;
 | |
|                 /*
 | |
|                  * [ 1 +i -1 -i ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
 | |
|                 /*
 | |
|                  * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
 | |
|                  */
 | |
|                 vecW = vld1q(pW3);
 | |
|                 pW3 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
 | |
|                 vst1q(inD, vecTmp1);
 | |
|                 inD += 4;
 | |
| 
 | |
|                 vecA = vldrwq_s32(inA);
 | |
|                 vecC = vldrwq_s32(inC);
 | |
| 
 | |
|                 blkCnt--;
 | |
|             }
 | |
|             pBase +=  CMPLX_DIM * n1;
 | |
|         }
 | |
|         n1 = n2;
 | |
|         n2 >>= 2u;
 | |
|         iter = iter << 2;
 | |
|         stage++;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * End of 1st stages process
 | |
|      * data is in 11.21(q21) format for the 1024 point as there are 3 middle stages
 | |
|      * data is in 9.23(q23) format for the 256 point as there are 2 middle stages
 | |
|      * data is in 7.25(q25) format for the 64 point as there are 1 middle stage
 | |
|      * data is in 5.27(q27) format for the 16 point as there are no middle stages
 | |
|      */
 | |
| 
 | |
|     /*
 | |
|      * start of Last stage process
 | |
|      */
 | |
|     uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
 | |
|     vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
 | |
| 
 | |
|     /*
 | |
|      * load scheduling
 | |
|      */
 | |
|     vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
 | |
|     vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
 | |
| 
 | |
|     blkCnt = (fftLen >> 3);
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         vecSum0 = vhaddq(vecA, vecC);
 | |
|         vecDiff0 = vhsubq(vecA, vecC);
 | |
| 
 | |
|         vecB = vldrwq_gather_base_s32(vecScGathAddr, 8);
 | |
|         vecD = vldrwq_gather_base_s32(vecScGathAddr, 24);
 | |
| 
 | |
|         vecSum1 = vhaddq(vecB, vecD);
 | |
|         vecDiff1 = vhsubq(vecB, vecD);
 | |
|         /*
 | |
|          * pre-load for next iteration
 | |
|          */
 | |
|         vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
 | |
|         vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
 | |
| 
 | |
|         vecTmp0 = vhaddq(vecSum0, vecSum1);
 | |
|         vstrwq_scatter_base_s32(vecScGathAddr, -64, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = vhsubq(vecSum0, vecSum1);
 | |
|         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
 | |
|         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 16, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
 | |
|         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 24, vecTmp0);
 | |
| 
 | |
|         blkCnt--;
 | |
|     }
 | |
|     /*
 | |
|      * output is in 11.21(q21) format for the 1024 point
 | |
|      * output is in 9.23(q23) format for the 256 point
 | |
|      * output is in 7.25(q25) format for the 64 point
 | |
|      * output is in 5.27(q27) format for the 16 point
 | |
|      */
 | |
| }
 | |
| 
 | |
| static void arm_cfft_radix4by2_inverse_q31_mve(const arm_cfft_instance_q31 *S, q31_t *pSrc, uint32_t fftLen)
 | |
| {
 | |
|     uint32_t     n2;
 | |
|     q31_t       *pIn0;
 | |
|     q31_t       *pIn1;
 | |
|     const q31_t *pCoef = S->pTwiddle;
 | |
| 
 | |
|     //uint16_t     twidCoefModifier = arm_cfft_radix2_twiddle_factor(S->fftLen);
 | |
|     //q31_t        twidIncr = (2 * twidCoefModifier * sizeof(q31_t));
 | |
|     uint32_t     blkCnt;
 | |
|     //uint64x2_t   vecOffs;
 | |
|     q31x4_t    vecIn0, vecIn1, vecSum, vecDiff;
 | |
|     q31x4_t    vecCmplxTmp, vecTw;
 | |
| 
 | |
|     n2 = fftLen >> 1;
 | |
| 
 | |
|     pIn0 = pSrc;
 | |
|     pIn1 = pSrc + fftLen;
 | |
|     //vecOffs[0] = 0;
 | |
|     //vecOffs[1] = (uint64_t) twidIncr;
 | |
|     blkCnt = n2 / 2;
 | |
| 
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         vecIn0 = vld1q_s32(pIn0);
 | |
|         vecIn1 = vld1q_s32(pIn1);
 | |
| 
 | |
|         vecIn0 = vecIn0 >> 1;
 | |
|         vecIn1 = vecIn1 >> 1;
 | |
|         vecSum = vhaddq(vecIn0, vecIn1);
 | |
|         vst1q(pIn0, vecSum);
 | |
|         pIn0 += 4;
 | |
| 
 | |
|         //vecTw = (q31x4_t) vldrdq_gather_offset_s64(pCoef, vecOffs);
 | |
|         vecTw = vld1q_s32(pCoef);
 | |
|         pCoef += 4;
 | |
|         vecDiff = vhsubq(vecIn0, vecIn1);
 | |
| 
 | |
|         vecCmplxTmp = MVE_CMPLX_MULT_FX_AxB(vecDiff, vecTw, q31x4_t);
 | |
|         vst1q(pIn1, vecCmplxTmp);
 | |
|         pIn1 += 4;
 | |
| 
 | |
|         //vecOffs = vaddq((q31x4_t) vecOffs, 2 * twidIncr);
 | |
|         blkCnt--;
 | |
|     }
 | |
| 
 | |
|     _arm_radix4_butterfly_inverse_q31_mve(S, pSrc, n2);
 | |
| 
 | |
|     _arm_radix4_butterfly_inverse_q31_mve(S, pSrc + fftLen, n2);
 | |
| 
 | |
|     pIn0 = pSrc;
 | |
|     blkCnt = (fftLen << 1) >> 2;
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         vecIn0 = vld1q_s32(pIn0);
 | |
|         vecIn0 = vecIn0 << 1;
 | |
|         vst1q(pIn0, vecIn0);
 | |
|         pIn0 += 4;
 | |
|         blkCnt--;
 | |
|     }
 | |
|     /*
 | |
|      * tail
 | |
|      * (will be merged thru tail predication)
 | |
|      */
 | |
|     blkCnt = (fftLen << 1) & 3;
 | |
|     if (blkCnt > 0U)
 | |
|     {
 | |
|         mve_pred16_t p0 = vctp32q(blkCnt);
 | |
| 
 | |
|         vecIn0 = vld1q_s32(pIn0);
 | |
|         vecIn0 = vecIn0 << 1;
 | |
|         vstrwq_p(pIn0, vecIn0, p0);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|   @ingroup groupTransforms
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @addtogroup ComplexFFT
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @brief         Processing function for the Q31 complex FFT.
 | |
|   @param[in]     S               points to an instance of the fixed-point CFFT structure
 | |
|   @param[in,out] p1              points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
 | |
|   @param[in]     ifftFlag       flag that selects transform direction
 | |
|                    - value = 0: forward transform
 | |
|                    - value = 1: inverse transform
 | |
|   @param[in]     bitReverseFlag flag that enables / disables bit reversal of output
 | |
|                    - value = 0: disables bit reversal of output
 | |
|                    - value = 1: enables bit reversal of output
 | |
|   @return        none
 | |
|  */
 | |
| void arm_cfft_q31(
 | |
|   const arm_cfft_instance_q31 * S,
 | |
|         q31_t * pSrc,
 | |
|         uint8_t ifftFlag,
 | |
|         uint8_t bitReverseFlag)
 | |
| {
 | |
|         uint32_t fftLen = S->fftLen;
 | |
| 
 | |
|         if (ifftFlag == 1U) {
 | |
| 
 | |
|             switch (fftLen) {
 | |
|             case 16:
 | |
|             case 64:
 | |
|             case 256:
 | |
|             case 1024:
 | |
|             case 4096:
 | |
|                 _arm_radix4_butterfly_inverse_q31_mve(S, pSrc, fftLen);
 | |
|                 break;
 | |
| 
 | |
|             case 32:
 | |
|             case 128:
 | |
|             case 512:
 | |
|             case 2048:
 | |
|                 arm_cfft_radix4by2_inverse_q31_mve(S, pSrc, fftLen);
 | |
|                 break;
 | |
|             }
 | |
|         } else {
 | |
|             switch (fftLen) {
 | |
|             case 16:
 | |
|             case 64:
 | |
|             case 256:
 | |
|             case 1024:
 | |
|             case 4096:
 | |
|                 _arm_radix4_butterfly_q31_mve(S, pSrc, fftLen);
 | |
|                 break;
 | |
| 
 | |
|             case 32:
 | |
|             case 128:
 | |
|             case 512:
 | |
|             case 2048:
 | |
|                 arm_cfft_radix4by2_q31_mve(S, pSrc, fftLen);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
| 
 | |
|         if (bitReverseFlag)
 | |
|         {
 | |
| 
 | |
|             arm_bitreversal_32_inpl_mve((uint32_t*)pSrc, S->bitRevLength, S->pBitRevTable);
 | |
| 
 | |
|         }
 | |
| }
 | |
| #else
 | |
| 
 | |
| extern void arm_radix4_butterfly_q31(
 | |
|         q31_t * pSrc,
 | |
|         uint32_t fftLen,
 | |
|   const q31_t * pCoef,
 | |
|         uint32_t twidCoefModifier);
 | |
| 
 | |
| extern void arm_radix4_butterfly_inverse_q31(
 | |
|         q31_t * pSrc,
 | |
|         uint32_t fftLen,
 | |
|   const q31_t * pCoef,
 | |
|         uint32_t twidCoefModifier);
 | |
| 
 | |
| extern void arm_bitreversal_32(
 | |
|         uint32_t * pSrc,
 | |
|   const uint16_t bitRevLen,
 | |
|   const uint16_t * pBitRevTable);
 | |
| 
 | |
| void arm_cfft_radix4by2_q31(
 | |
|         q31_t * pSrc,
 | |
|         uint32_t fftLen,
 | |
|   const q31_t * pCoef);
 | |
| 
 | |
| void arm_cfft_radix4by2_inverse_q31(
 | |
|         q31_t * pSrc,
 | |
|         uint32_t fftLen,
 | |
|   const q31_t * pCoef);
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @ingroup groupTransforms
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @addtogroup ComplexFFT
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @brief         Processing function for the Q31 complex FFT.
 | |
|   @param[in]     S               points to an instance of the fixed-point CFFT structure
 | |
|   @param[in,out] p1              points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
 | |
|   @param[in]     ifftFlag       flag that selects transform direction
 | |
|                    - value = 0: forward transform
 | |
|                    - value = 1: inverse transform
 | |
|   @param[in]     bitReverseFlag flag that enables / disables bit reversal of output
 | |
|                    - value = 0: disables bit reversal of output
 | |
|                    - value = 1: enables bit reversal of output
 | |
|   @return        none
 | |
|  */
 | |
| void arm_cfft_q31(
 | |
|   const arm_cfft_instance_q31 * S,
 | |
|         q31_t * p1,
 | |
|         uint8_t ifftFlag,
 | |
|         uint8_t bitReverseFlag)
 | |
| {
 | |
|   uint32_t L = S->fftLen;
 | |
| 
 | |
|   if (ifftFlag == 1U)
 | |
|   {
 | |
|      switch (L)
 | |
|      {
 | |
|      case 16:
 | |
|      case 64:
 | |
|      case 256:
 | |
|      case 1024:
 | |
|      case 4096:
 | |
|        arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
 | |
|        break;
 | |
| 
 | |
|      case 32:
 | |
|      case 128:
 | |
|      case 512:
 | |
|      case 2048:
 | |
|        arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle );
 | |
|        break;
 | |
|      }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|      switch (L)
 | |
|      {
 | |
|      case 16:
 | |
|      case 64:
 | |
|      case 256:
 | |
|      case 1024:
 | |
|      case 4096:
 | |
|        arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
 | |
|        break;
 | |
| 
 | |
|      case 32:
 | |
|      case 128:
 | |
|      case 512:
 | |
|      case 2048:
 | |
|        arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle );
 | |
|        break;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   if ( bitReverseFlag )
 | |
|     arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   @} end of ComplexFFT group
 | |
|  */
 | |
| 
 | |
| void arm_cfft_radix4by2_q31(
 | |
|         q31_t * pSrc,
 | |
|         uint32_t fftLen,
 | |
|   const q31_t * pCoef)
 | |
| {
 | |
|         uint32_t i, l;
 | |
|         uint32_t n2;
 | |
|         q31_t xt, yt, cosVal, sinVal;
 | |
|         q31_t p0, p1;
 | |
| 
 | |
|   n2 = fftLen >> 1U;
 | |
|   for (i = 0; i < n2; i++)
 | |
|   {
 | |
|      cosVal = pCoef[2 * i];
 | |
|      sinVal = pCoef[2 * i + 1];
 | |
| 
 | |
|      l = i + n2;
 | |
| 
 | |
|      xt =          (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U);
 | |
|      pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U);
 | |
| 
 | |
|      yt =              (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U);
 | |
|      pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U);
 | |
| 
 | |
|      mult_32x32_keep32_R(p0, xt, cosVal);
 | |
|      mult_32x32_keep32_R(p1, yt, cosVal);
 | |
|      multAcc_32x32_keep32_R(p0, yt, sinVal);
 | |
|      multSub_32x32_keep32_R(p1, xt, sinVal);
 | |
| 
 | |
|      pSrc[2 * l]     = p0 << 1;
 | |
|      pSrc[2 * l + 1] = p1 << 1;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* first col */
 | |
|   arm_radix4_butterfly_q31 (pSrc,          n2, (q31_t*)pCoef, 2U);
 | |
| 
 | |
|   /* second col */
 | |
|   arm_radix4_butterfly_q31 (pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
 | |
| 
 | |
|   n2 = fftLen >> 1U;
 | |
|   for (i = 0; i < n2; i++)
 | |
|   {
 | |
|      p0 = pSrc[4 * i + 0];
 | |
|      p1 = pSrc[4 * i + 1];
 | |
|      xt = pSrc[4 * i + 2];
 | |
|      yt = pSrc[4 * i + 3];
 | |
| 
 | |
|      p0 <<= 1U;
 | |
|      p1 <<= 1U;
 | |
|      xt <<= 1U;
 | |
|      yt <<= 1U;
 | |
| 
 | |
|      pSrc[4 * i + 0] = p0;
 | |
|      pSrc[4 * i + 1] = p1;
 | |
|      pSrc[4 * i + 2] = xt;
 | |
|      pSrc[4 * i + 3] = yt;
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| void arm_cfft_radix4by2_inverse_q31(
 | |
|         q31_t * pSrc,
 | |
|         uint32_t fftLen,
 | |
|   const q31_t * pCoef)
 | |
| {
 | |
|   uint32_t i, l;
 | |
|   uint32_t n2;
 | |
|   q31_t xt, yt, cosVal, sinVal;
 | |
|   q31_t p0, p1;
 | |
| 
 | |
|   n2 = fftLen >> 1U;
 | |
|   for (i = 0; i < n2; i++)
 | |
|   {
 | |
|      cosVal = pCoef[2 * i];
 | |
|      sinVal = pCoef[2 * i + 1];
 | |
| 
 | |
|      l = i + n2;
 | |
| 
 | |
|      xt =          (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U);
 | |
|      pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U);
 | |
| 
 | |
|      yt =              (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U);
 | |
|      pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U);
 | |
| 
 | |
|      mult_32x32_keep32_R(p0, xt, cosVal);
 | |
|      mult_32x32_keep32_R(p1, yt, cosVal);
 | |
|      multSub_32x32_keep32_R(p0, yt, sinVal);
 | |
|      multAcc_32x32_keep32_R(p1, xt, sinVal);
 | |
| 
 | |
|      pSrc[2 * l]     = p0 << 1U;
 | |
|      pSrc[2 * l + 1] = p1 << 1U;
 | |
|   }
 | |
| 
 | |
|   /* first col */
 | |
|   arm_radix4_butterfly_inverse_q31( pSrc,          n2, (q31_t*)pCoef, 2U);
 | |
| 
 | |
|   /* second col */
 | |
|   arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
 | |
| 
 | |
|   n2 = fftLen >> 1U;
 | |
|   for (i = 0; i < n2; i++)
 | |
|   {
 | |
|      p0 = pSrc[4 * i + 0];
 | |
|      p1 = pSrc[4 * i + 1];
 | |
|      xt = pSrc[4 * i + 2];
 | |
|      yt = pSrc[4 * i + 3];
 | |
| 
 | |
|      p0 <<= 1U;
 | |
|      p1 <<= 1U;
 | |
|      xt <<= 1U;
 | |
|      yt <<= 1U;
 | |
| 
 | |
|      pSrc[4 * i + 0] = p0;
 | |
|      pSrc[4 * i + 1] = p1;
 | |
|      pSrc[4 * i + 2] = xt;
 | |
|      pSrc[4 * i + 3] = yt;
 | |
|   }
 | |
| }
 | |
| #endif /* defined(ARM_MATH_MVEI) */
 | 
