mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-31 01:42:04 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			764 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			764 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_mat_mult_f16.c
 | |
|  * Description:  Floating-point matrix multiplication
 | |
|  *
 | |
|  * $Date:        23 April 2021
 | |
|  * $Revision:    V1.9.0
 | |
|  *
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "dsp/matrix_functions_f16.h"
 | |
| 
 | |
| #if defined(ARM_FLOAT16_SUPPORTED)
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @ingroup groupMatrix
 | |
|  */
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @addtogroup MatrixMult
 | |
|  * @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @brief Floating-point matrix multiplication.
 | |
|  * @param[in]       *pSrcA points to the first input matrix structure
 | |
|  * @param[in]       *pSrcB points to the second input matrix structure
 | |
|  * @param[out]      *pDst points to output matrix structure
 | |
|  * @return     		The function returns either
 | |
|  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 | |
|  */
 | |
| 
 | |
| #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| __STATIC_FORCEINLINE arm_status arm_mat_mult_f16_2x2_mve(
 | |
|     const arm_matrix_instance_f16 *pSrcA,
 | |
|     const arm_matrix_instance_f16 *pSrcB,
 | |
|     arm_matrix_instance_f16 *pDst)
 | |
| {
 | |
|     static const uint16_t offsetA[8] = { 0, 0, 2, 2, 0, 0, 2, 2 };
 | |
|     /* offsetB allows to read and duplicate 1 row of B */
 | |
|     static const uint16_t offsetB[8] = { 0, 1, 0, 1, 0, 1, 0, 1 };
 | |
|     uint16x8_t    vecOffsA, vecOffsB;
 | |
|     f16x8_t       vecInA, vecInB, vecDst;
 | |
|     float16_t      *pOut = pDst->pData;  /* output data matrix pointer */
 | |
| 
 | |
|     /*
 | |
|      * load initial offsets
 | |
|      */
 | |
|     vecOffsA = vldrhq_u16((uint16_t const *) offsetA);
 | |
|     vecOffsB = vldrhq_u16((uint16_t const *) offsetB);
 | |
|     /*
 | |
|      * load {a00 a00 a10 a10 x x x x }
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      * load {b00 b01 b00 b01 x x x x }
 | |
|      */
 | |
|     vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
 | |
|     /*
 | |
|      *  { a00 b00       a00 b01
 | |
|      *    a10 b00       a10 b01
 | |
|      *       x             x
 | |
|      *       x             x   }
 | |
|      */
 | |
|     vecDst = vmulq(vecInA, vecInB);
 | |
|     /*
 | |
|      * move to 2nd column of matrix A
 | |
|      */
 | |
|     vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1);
 | |
|     /*
 | |
|      * load {a01 a01 a11 a11 x x x x}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      * move to next B row
 | |
|      */
 | |
|     vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 2);
 | |
|     /*
 | |
|      * load {b10, b11, b10, b11, x x x x }
 | |
|      */
 | |
|     vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
 | |
|     /*
 | |
|      *  { a00 b00 + a01 b10   a00 b01 + a01 b11
 | |
|      *    a10 b00 + a11 b10     a10 b01 + a11 b11
 | |
|      *             x                    x
 | |
|      *             x                    x       }
 | |
|      */
 | |
|     vecDst = vfmaq(vecDst, vecInA, vecInB);
 | |
| 
 | |
|     mve_pred16_t p0 = vctp16q(2*2);
 | |
|     /*
 | |
|      * Store the result in the destination buffer
 | |
|      * (lower half of the vector)
 | |
|      */
 | |
|     vstrhq_p(pOut, vecDst, p0);
 | |
| 
 | |
|     return (ARM_MATH_SUCCESS);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| __STATIC_FORCEINLINE arm_status arm_mat_mult_f16_3x3_mve(
 | |
|     const arm_matrix_instance_f16 *pSrcA,
 | |
|     const arm_matrix_instance_f16 *pSrcB,
 | |
|     arm_matrix_instance_f16 *pDst)
 | |
| {
 | |
|     static const uint16_t offsetA[8] = { 0, 0, 0, 3, 3, 3, 6, 6 };
 | |
|     /* offsetB allows to read and duplicate 1 row of B */
 | |
|     static const uint16_t offsetB[8] = { 0, 1, 2, 0, 1, 2, 0, 1 };
 | |
|     uint16x8_t    vecOffsA, vecOffsB;
 | |
|     f16x8_t       vecInA, vecInB, vecDst;
 | |
|     float16_t      *pOut = pDst->pData;  /* output data matrix pointer */
 | |
| 
 | |
|     /*
 | |
|      * load initial offsets
 | |
|      */
 | |
|     vecOffsA = vldrhq_u16((uint16_t const *) offsetA);
 | |
|     vecOffsB = vldrhq_u16((uint16_t const *) offsetB);
 | |
| 
 | |
|     /*
 | |
|      * load {a00 a00 a00 a10 a10 a10 a20 a20}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      * load {b00 b01 b02 b00 b01 b02 b00 b01}
 | |
|      */
 | |
|     vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
 | |
|     /*
 | |
|      *  { a00 b00       a00 b01     a00 b02
 | |
|      *    a10 b00       a10 b01     a10 b02
 | |
|      *    a20 b00       a20 b01}
 | |
|      */
 | |
|     vecDst = vmulq(vecInA, vecInB);
 | |
| 
 | |
|     /*
 | |
|      * move to 2nd column of matrix A
 | |
|      */
 | |
|     vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1);
 | |
|     /*
 | |
|      * load {a01 a01 a01 a11 a11 a11 a21 a21}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      * move to next B row
 | |
|      */
 | |
|     vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 3);
 | |
|     /*
 | |
|      * load {b10, b11, b12, b10, b11, b12, b10, b11}
 | |
|      */
 | |
|     vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
 | |
|     /*
 | |
|      *  { a00 b00 + a01 b10   a00 b01 + a01 b11     a00 b02 + a01 b12
 | |
|      *    a10 b00 + a11 b10     a10 b01 + a11 b11     a10 b02 + a11 b12
 | |
|      *    a20 b00 + a21 b10     a20 b01 + a21 b11   }
 | |
|      */
 | |
|     vecDst = vfmaq(vecDst, vecInA, vecInB);
 | |
|     /*
 | |
|      * move to 3rd column of matrix A
 | |
|      */
 | |
|     vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1);
 | |
|     /*
 | |
|      * load {a02 a02 a02 a12 a12 a12 a22 a22}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      * move to next B row
 | |
|      */
 | |
|     vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 3);
 | |
|     /*
 | |
|      * load {b20, b21, b22, b20, b21, b22, b20, b21}
 | |
|      */
 | |
|     vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
 | |
|     /*
 | |
|      *  {a00 b00 + a01 b10 + a02 b20  a00 b01 + a01 b11 + a02 b21     a00 b02 + a01 b12 + a02 b22},
 | |
|      *   a10 b00 + a11 b10 + a12 b20    a10 b01 + a11 b11 + a12 b21     a10 b02 + a11 b12 + a12 b22},
 | |
|      *   a20 b00 + a21 b10 + a22 b20    a20 b01 + a21 b11 + a22 b21   }
 | |
|      */
 | |
|     vecDst = vfmaq(vecDst, vecInA, vecInB);
 | |
| 
 | |
|     /*
 | |
|      * Store the result in the destination buffer
 | |
|      */
 | |
|     vst1q(pOut, vecDst); pOut += 8;
 | |
| 
 | |
|     /* last element computed in scalar mode
 | |
|      * a20 b02 + a21 b12 + a22 b22
 | |
|      */
 | |
|     _Float16 * pA = (_Float16 *)pSrcA->pData;
 | |
|     _Float16 * pB = (_Float16 *)pSrcB->pData;
 | |
|     *pOut = pA[2*3] * pB[2] + pA[2*3+1] * pB[3+2] + pA[2*3+2] * pB[2*3+2];
 | |
| 
 | |
|     return (ARM_MATH_SUCCESS);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| __STATIC_FORCEINLINE arm_status arm_mat_mult_f16_4x4_mve(
 | |
|     const arm_matrix_instance_f16 *pSrcA,
 | |
|     const arm_matrix_instance_f16 *pSrcB,
 | |
|     arm_matrix_instance_f16 *pDst)
 | |
| {
 | |
|     /* offsetA allows to read and duplicate 2 successive column elements of A */
 | |
|     static const uint16_t offsetA[8] = { 0, 0, 0, 0, 4, 4, 4, 4 };
 | |
|     /* offsetB allows to read and duplicate 1 row of B */
 | |
|     static const uint16_t offsetB[8] = { 0, 1, 2, 3, 0, 1, 2, 3 };
 | |
|     uint16x8_t    vecOffsA, vecOffsB;
 | |
|     f16x8_t       vecInA, vecInB, vecDst0, vecDst1;
 | |
|     float16_t      *pOut = pDst->pData;  /* output data matrix pointer */
 | |
| 
 | |
|     /*
 | |
|      * load initial offsets
 | |
|      */
 | |
|     vecOffsA = vldrhq_u16((uint16_t const *) offsetA);
 | |
|     vecOffsB = vldrhq_u16((uint16_t const *) offsetB);
 | |
| 
 | |
|     /*
 | |
|      * load {a00 a00 a00 a00 a10 a10 a10 a10}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      * load {b00 b01 b02 b03 b00 b01 b02 b03}
 | |
|      */
 | |
|     vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
 | |
|     /*
 | |
|      *  { a00 b00       a00 b01     a00 b02     a00 b03
 | |
|      *    a10 b00       a10 b01     a10 b02     a10 b03 }
 | |
|      */
 | |
|     vecDst0 = vmulq(vecInA, vecInB);
 | |
|     /*
 | |
|      * jump 2 x A rows (2nd half of matrix)
 | |
|      */
 | |
|     vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
 | |
|     /*
 | |
|      * load {a20 a20 a20 a20 a30 a30 a30 a30}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      *  { a20 b00       a20 b01     a20 b02     a20 b03
 | |
|      *    a30 b00       a30 b01     a30 b02 +   a31 b12 }
 | |
|      */
 | |
|     vecDst1 = vmulq(vecInA, vecInB);
 | |
|     /*
 | |
|      * rewind back to top half of the A matrix (2nd column)
 | |
|      */
 | |
|     vecOffsA = vsubq(vecOffsA, (uint16_t) 7);
 | |
|     /*
 | |
|      * load {a01 a01 a01 a01 a11 a11 a11 a11}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      * move to next B row
 | |
|      */
 | |
|     vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4);
 | |
|     /*
 | |
|      * load {b10, b11, b12, b13, b10, b11, b12, b13}
 | |
|      */
 | |
|     vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
 | |
|     /*
 | |
|      *  { a00 b00 + a01 b10         a00 b01 + a01 b11       a00 b02 + a01 b12       a00 b03 + a01 b13
 | |
|      *    a10 b00 + a11 b10         a10 b01 + a11 b11       a10 b02 + a11 b12       a10 b03 + a11 b13 }
 | |
|      */
 | |
|     vecDst0 = vfmaq(vecDst0, vecInA, vecInB);
 | |
|     /*
 | |
|      * jump 2 x A rows (2nd half of matrix)
 | |
|      */
 | |
|     vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
 | |
|     /*
 | |
|      * load {a21 a21 a21 a21 a31 a31 a31 a31}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      *  {a20 b00 + a21 b10      a20 b01 + a21 b11       a20 b02 + a21 b12       a20 b03 + a21 b13
 | |
|      *   a30 b00 + a31 b10      a30 b01 + a31 b11       a30 b02 + a31 b12       a30 b03 + a31 b13 }
 | |
|      */
 | |
|     vecDst1 = vfmaq(vecDst1, vecInA, vecInB);
 | |
| 
 | |
|     /*
 | |
|      * rewind back to top half of the A matrix (3rd column)
 | |
|      */
 | |
|     vecOffsA = vsubq(vecOffsA, (uint16_t) 7);
 | |
|     /*
 | |
|      * load {a02 a02 a02 a02 a12 a12 a12 a12}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      * move to next B row
 | |
|      */
 | |
|     vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4);
 | |
|     /*
 | |
|      * load {b20, b21, b22, b23, b20, b21, b22, b23}
 | |
|      */
 | |
|     vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
 | |
|     /*
 | |
|      *  { a00 b00 + a01 b10 + a02 b20    a00 b01 + a01 b11 + a02 b21    a00 b02 + a01 b12 + a02 b22   a00 b03 + a01 b13 + a02 b23
 | |
|      *    a10 b00 + a11 b10 + a12 b20    a10 b01 + a11 b11 + a12 b21    a10 b02 + a11 b12 + a12 b22   a10 b03 + a11 b13 + a12 b23 }
 | |
|      */
 | |
|     vecDst0 = vfmaq(vecDst0, vecInA, vecInB);
 | |
|     /*
 | |
|      * jump 2 x A rows
 | |
|      */
 | |
|     vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
 | |
| 
 | |
|     /*
 | |
|      * load {a22 a22 a22 a22 a32 a32 a32 a32}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      *  {a20 b00 + a21 b10 + a22 b20   a20 b01 + a21 b11 + a22 b21  a20 b02 + a21 b12 + a22 b22    a20 b03 + a21 b13 + a22 b23
 | |
|      *   a30 b00 + a31 b10 + a32 b20   a30 b01 + a31 b11 + a32 b21  a30 b02 + a31 b12 + a32 b22    a30 b03 + a31 b13 + a32 b23 }
 | |
|      */
 | |
|     vecDst1 = vfmaq(vecDst1, vecInA, vecInB);
 | |
| 
 | |
|     /*
 | |
|      * rewind back to top half of the A matrix (4th column)
 | |
|      */
 | |
|     vecOffsA = vsubq(vecOffsA, (uint16_t) 7);
 | |
|     /*
 | |
|      * load {a03 a03 a03 a03 a13 a13 a13 a13}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      * move to next B row
 | |
|      */
 | |
|     vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4);
 | |
|     /*
 | |
|      * load {b30, b31, b32, b33, b30, b31, b32, b33}
 | |
|      */
 | |
|     vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
 | |
|     /*
 | |
|      * { a00 b00 +...+ a03 b30,    a00 b01 +...+ a03 b31,   a00 b02 +...+ a03 b32,   a00 b03 +...+ a03 b33
 | |
|      *   a10 b00 +...+ a13 b30,    a10 b01 +...+ a13 b31,   a10 b02 +...+ a13 b32,   a10 b03 +...+ a13 b33 }
 | |
|      */
 | |
|     vecDst0 = vfmaq(vecDst0, vecInA, vecInB);
 | |
|     /*
 | |
|      * jump 2 x A rows
 | |
|      */
 | |
|     vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
 | |
|     /*
 | |
|      * load {a23 a23 a23 a23 a33 a33 a33 a33}
 | |
|      */
 | |
|     vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
 | |
|     /*
 | |
|      *  {a20 b00 +...+ a23 b30,   a20 b01 +...+ a23 b31,   a20 b02 +...+ a23 b32,   a20 b03 +...+ a23 b33
 | |
|      *   a30 b00 +...+ a33 b30,   a30 b01 +...+ a33 b31,   a30 b02 +...+ a33 b32,   a30 b03 +...+ a33 b33 }
 | |
|      */
 | |
|     vecDst1 = vfmaq(vecDst1, vecInA, vecInB);
 | |
| 
 | |
|     /*
 | |
|      * Store the result in the destination buffer
 | |
|      */
 | |
|     vst1q(pOut, vecDst0); pOut += 8;
 | |
|     vst1q(pOut, vecDst1);
 | |
| 
 | |
|     return (ARM_MATH_SUCCESS);
 | |
| }
 | |
| 
 | |
| 
 | |
| arm_status arm_mat_mult_f16(
 | |
|   const arm_matrix_instance_f16 * pSrcA,
 | |
|   const arm_matrix_instance_f16 * pSrcB,
 | |
|   arm_matrix_instance_f16 * pDst)
 | |
| {
 | |
|        float16_t  *pInB = pSrcB->pData;        /* input data matrix pointer B */
 | |
|     float16_t  *pInA = pSrcA->pData;        /* input data matrix pointer A  */
 | |
|     float16_t  *pOut = pDst->pData;         /* output data matrix pointer */
 | |
|     int         numRowsA = pSrcA->numRows;  /* number of rows of input matrix A */
 | |
|     int         numColsB = pSrcB->numCols;  /* number of columns of input matrix B */
 | |
|     int         numColsA = pSrcA->numCols;  /* number of columns of input matrix A */
 | |
|     uint32_t    blkCnt;                     /* loop counters */
 | |
|     int         i;
 | |
| 
 | |
| 
 | |
| #ifdef ARM_MATH_MATRIX_CHECK
 | |
| 
 | |
|   /* Check for matrix mismatch condition */
 | |
|   if ((pSrcA->numCols != pSrcB->numRows) ||
 | |
|       (pSrcA->numRows != pDst->numRows)  ||
 | |
|       (pSrcB->numCols != pDst->numCols)    )
 | |
|   {
 | |
|     /* Set status as ARM_MATH_SIZE_MISMATCH */
 | |
|     return(ARM_MATH_SIZE_MISMATCH);
 | |
|   }
 | |
|   else
 | |
| 
 | |
| #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
 | |
| {
 | |
|     /* small squared matrix specialized routines */
 | |
|     if(numRowsA == numColsB && numColsB == numColsA) {
 | |
|         if(numRowsA == 2)
 | |
|             return arm_mat_mult_f16_2x2_mve(pSrcA, pSrcB, pDst);
 | |
|         else if(numRowsA == 3)
 | |
|             return arm_mat_mult_f16_3x3_mve(pSrcA, pSrcB, pDst);
 | |
|         else if(numRowsA == 4)
 | |
|             return arm_mat_mult_f16_4x4_mve(pSrcA, pSrcB, pDst);
 | |
|     }
 | |
| 
 | |
|     /* main loop process 4 rows */
 | |
|     i = numRowsA / 4;
 | |
|     while(i > 0)
 | |
|     {
 | |
|         float16_t   *pInA0, *pInA1, *pInA2, *pInA3;
 | |
|         float16_t   *pInB0;
 | |
|         float16_t   *pOut0, *pOut1, *pOut2, *pOut3;
 | |
|         f16x8_t    vecMac0, vecMac1, vecMac2, vecMac3;
 | |
|         f16x8_t    vecInB;
 | |
| 
 | |
|         /* pointers to 4 consecutive output rows */
 | |
|         pOut0 = pOut;
 | |
|         pOut1 = pOut0 + numColsB;
 | |
|         pOut2 = pOut1 + numColsB;
 | |
|         pOut3 = pOut2 + numColsB;
 | |
|         pInB0 = pInB;
 | |
| 
 | |
|         int       k = numColsB >> 3;
 | |
|         while(k > 0)
 | |
|         {
 | |
|             /* pointers to 4 consecutive Matrix A rows */
 | |
|             pInA0 = pInA;
 | |
|             pInA1 = pInA0 + numColsA;
 | |
|             pInA2 = pInA1 + numColsA;
 | |
|             pInA3 = pInA2 + numColsA;
 | |
| 
 | |
|             vecMac0 = vdupq_n_f16(0.0f16);
 | |
|             vecMac1 = vdupq_n_f16(0.0f16);
 | |
|             vecMac2 = vdupq_n_f16(0.0f16);
 | |
|             vecMac3 = vdupq_n_f16(0.0f16);
 | |
| 
 | |
|             blkCnt = numColsA;
 | |
| 
 | |
|             while (blkCnt > 0U)
 | |
|             {
 | |
|                 /*
 | |
|                  * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3..., bi,4n+7}
 | |
|                  */
 | |
|                 vecInB = *(f16x8_t *)pInB0; /* vldrhq_f16(pInB0, 0); */
 | |
| 
 | |
|                 vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
 | |
|                 vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
 | |
|                 vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
 | |
|                 vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
 | |
| 
 | |
|                 pInB0 = pInB0 + numColsB;
 | |
|                 /*
 | |
|                  * Decrement the blockSize loop counter
 | |
|                  */
 | |
|                 blkCnt--;
 | |
|             }
 | |
| 
 | |
|             /* Store the results (4 x 8 block) in the destination buffer */
 | |
|             vst1q(pOut0, vecMac0);  pOut0 += 8;
 | |
|             vst1q(pOut1, vecMac1);  pOut1 += 8;
 | |
|             vst1q(pOut2, vecMac2);  pOut2 += 8;
 | |
|             vst1q(pOut3, vecMac3);  pOut3 += 8;
 | |
|             /*
 | |
|              * rewind
 | |
|              */
 | |
|             pInB0 -= (numColsB * numColsA) - 8;
 | |
|             k--;
 | |
|         }
 | |
| 
 | |
|         int       colBLeft = numColsB & 7;
 | |
|         if (colBLeft)
 | |
|         {
 | |
|             pInA0 = pInA;
 | |
|             pInA1 = pInA0 + numColsA;
 | |
|             pInA2 = pInA1 + numColsA;
 | |
|             pInA3 = pInA2 + numColsA;
 | |
|             mve_pred16_t p0 = vctp16q(colBLeft);
 | |
| 
 | |
|             vecMac0 = vdupq_n_f16(0.0f16);
 | |
|             vecMac1 = vdupq_n_f16(0.0f16);
 | |
|             vecMac2 = vdupq_n_f16(0.0f16);
 | |
|             vecMac3 = vdupq_n_f16(0.0f16);
 | |
| 
 | |
|             blkCnt = numColsA;
 | |
| 
 | |
|             while (blkCnt > 0U)
 | |
|             {
 | |
|                 /*
 | |
|                  * load {bi,4n+0, bi,4n+1, bi,4n+2, ..bi,4n+colBLeft-1, 0, ..}
 | |
|                  */
 | |
|                 vecInB = vldrhq_z_f16(pInB0, p0);
 | |
| 
 | |
|                 vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
 | |
|                 vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
 | |
|                 vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
 | |
|                 vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
 | |
| 
 | |
|                 pInB0 = pInB0 + numColsB;
 | |
|                 /*
 | |
|                  * Decrement the blockSize loop counter
 | |
|                  */
 | |
|                 blkCnt--;
 | |
|             }
 | |
| 
 | |
|             /* Store the results (4 x colBLeft block) in the destination buffer */
 | |
|             vstrhq_p_f16(pOut0, vecMac0, p0);
 | |
|             vstrhq_p_f16(pOut1, vecMac1, p0);
 | |
|             vstrhq_p_f16(pOut2, vecMac2, p0);
 | |
|             vstrhq_p_f16(pOut3, vecMac3, p0);
 | |
|         }
 | |
| 
 | |
|         pInA += 4 * numColsA;
 | |
|         pOut += 4 * numColsB;
 | |
|         i--;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * non multiple of 4 rows for Matrix A
 | |
|      * process single row
 | |
|      */
 | |
|     if (numRowsA & 3)
 | |
|     {
 | |
|         i = numRowsA & 3;
 | |
|         do
 | |
|         {
 | |
|             float16_t   *pInA0;
 | |
|             float16_t   *pInB0;
 | |
|             float16_t   *pOut0;
 | |
|             f16x8_t    vecInB;
 | |
|             f16x8_t    vecMac0;
 | |
| 
 | |
|             pOut0 = pOut;
 | |
|             pInB0 = pInB;
 | |
| 
 | |
|             int       k = numColsB >> 3;
 | |
|             while(k > 0)
 | |
|             {
 | |
|                 pInA0 = pInA;
 | |
| 
 | |
|                 vecMac0 = vdupq_n_f16(0.0f16);
 | |
|                 blkCnt = numColsA;
 | |
| 
 | |
|                 while (blkCnt > 0U)
 | |
|                 {
 | |
|                     /*
 | |
|                      * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3, ...bi,4n+7}
 | |
|                      */
 | |
|                     vecInB = *(f16x8_t *)pInB0; /* vldrhq_f16(pInB0, 0); */
 | |
| 
 | |
|                     vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
 | |
| 
 | |
|                     pInB0 = pInB0 + numColsB;
 | |
|                     /*
 | |
|                      * Decrement the blockSize loop counter
 | |
|                      */
 | |
|                     blkCnt--;
 | |
|                 }
 | |
|                 /* Store the results (1 x 8 block) in the destination buffer */
 | |
|                 vst1q(pOut0, vecMac0);   pOut0 += 8;
 | |
|                 /*
 | |
|                  * rewind
 | |
|                  */
 | |
|                 pInB0 -= (numColsB * numColsA) - 8;
 | |
|                 k--;
 | |
|             }
 | |
| 
 | |
|             int  colBLeft = numColsB & 7;
 | |
|             if (colBLeft)
 | |
|             {
 | |
|                 pInA0 = pInA;
 | |
|                 mve_pred16_t p0 = vctp16q(colBLeft);
 | |
| 
 | |
|                 vecMac0 = vdupq_n_f16(0.0f16);
 | |
|                 blkCnt = numColsA;
 | |
| 
 | |
|                 while (blkCnt > 0U)
 | |
|                 {
 | |
|                     /*
 | |
|                      * load {bi,4n+0, bi,4n+1, bi,4n+2, ..., bi,4n+colBLeft, 0, ...}
 | |
|                      */
 | |
|                     vecInB = vldrhq_z_f16(pInB0, p0);
 | |
| 
 | |
|                     vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
 | |
| 
 | |
|                     pInB0 = pInB0 + numColsB;
 | |
|                     /*
 | |
|                      * Decrement the blockSize loop counter
 | |
|                      */
 | |
|                     blkCnt--;
 | |
|                 }
 | |
|                 /* Store the results (1 x colBLeft block) in the destination buffer */
 | |
|                 vstrhq_p_f16(pOut0, vecMac0, p0);
 | |
|             }
 | |
| 
 | |
|             pInA += 1 * numColsA;
 | |
|             pOut += 1 * numColsB;
 | |
|         }
 | |
|         while (--i);
 | |
|     }
 | |
|     /*
 | |
|      * Return to application
 | |
|      */
 | |
|     return (ARM_MATH_SUCCESS);
 | |
|   }
 | |
| }
 | |
| #else
 | |
| 
 | |
| 
 | |
| arm_status arm_mat_mult_f16(
 | |
|   const arm_matrix_instance_f16 * pSrcA,
 | |
|   const arm_matrix_instance_f16 * pSrcB,
 | |
|         arm_matrix_instance_f16 * pDst)
 | |
| {
 | |
|   float16_t *pIn1 = pSrcA->pData;                /* Input data matrix pointer A */
 | |
|   float16_t *pIn2 = pSrcB->pData;                /* Input data matrix pointer B */
 | |
|   float16_t *pInA = pSrcA->pData;                /* Input data matrix pointer A */
 | |
|   float16_t *pInB = pSrcB->pData;                /* Input data matrix pointer B */
 | |
|   float16_t *pOut = pDst->pData;                 /* Output data matrix pointer */
 | |
|   float16_t *px;                                 /* Temporary output data matrix pointer */
 | |
|   _Float16 sum;                                 /* Accumulator */
 | |
|   uint16_t numRowsA = pSrcA->numRows;            /* Number of rows of input matrix A */
 | |
|   uint16_t numColsB = pSrcB->numCols;            /* Number of columns of input matrix B */
 | |
|   uint16_t numColsA = pSrcA->numCols;            /* Number of columns of input matrix A */
 | |
|   uint32_t col, i = 0U, row = numRowsA, colCnt;  /* Loop counters */
 | |
|   arm_status status;                             /* Status of matrix multiplication */
 | |
| 
 | |
| #ifdef ARM_MATH_MATRIX_CHECK
 | |
| 
 | |
|   /* Check for matrix mismatch condition */
 | |
|   if ((pSrcA->numCols != pSrcB->numRows) ||
 | |
|       (pSrcA->numRows != pDst->numRows)  ||
 | |
|       (pSrcB->numCols != pDst->numCols)    )
 | |
|   {
 | |
|     /* Set status as ARM_MATH_SIZE_MISMATCH */
 | |
|     status = ARM_MATH_SIZE_MISMATCH;
 | |
|   }
 | |
|   else
 | |
| 
 | |
| #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
 | |
| 
 | |
|   {
 | |
|     /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
 | |
|     /* row loop */
 | |
|     do
 | |
|     {
 | |
|       /* Output pointer is set to starting address of row being processed */
 | |
|       px = pOut + i;
 | |
| 
 | |
|       /* For every row wise process, column loop counter is to be initiated */
 | |
|       col = numColsB;
 | |
| 
 | |
|       /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
 | |
|       pIn2 = pSrcB->pData;
 | |
| 
 | |
|       /* column loop */
 | |
|       do
 | |
|       {
 | |
|         /* Set the variable sum, that acts as accumulator, to zero */
 | |
|         sum = 0.0f16;
 | |
| 
 | |
|         /* Initialize pointer pIn1 to point to starting address of column being processed */
 | |
|         pIn1 = pInA;
 | |
| 
 | |
| #if defined (ARM_MATH_LOOPUNROLL)
 | |
| 
 | |
|         /* Loop unrolling: Compute 4 MACs at a time. */
 | |
|         colCnt = numColsA >> 2U;
 | |
| 
 | |
|         /* matrix multiplication */
 | |
|         while (colCnt > 0U)
 | |
|         {
 | |
|           /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
 | |
| 
 | |
|           /* Perform the multiply-accumulates */
 | |
|           sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
 | |
|           pIn2 += numColsB;
 | |
| 
 | |
|           sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
 | |
|           pIn2 += numColsB;
 | |
| 
 | |
|           sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
 | |
|           pIn2 += numColsB;
 | |
| 
 | |
|           sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
 | |
|           pIn2 += numColsB;
 | |
| 
 | |
|           /* Decrement loop counter */
 | |
|           colCnt--;
 | |
|         }
 | |
| 
 | |
|         /* Loop unrolling: Compute remaining MACs */
 | |
|         colCnt = numColsA % 0x4U;
 | |
| 
 | |
| #else
 | |
| 
 | |
|         /* Initialize cntCnt with number of columns */
 | |
|         colCnt = numColsA;
 | |
| 
 | |
| #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
 | |
| 
 | |
|         while (colCnt > 0U)
 | |
|         {
 | |
|           /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
 | |
| 
 | |
|           /* Perform the multiply-accumulates */
 | |
|           sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
 | |
|           pIn2 += numColsB;
 | |
| 
 | |
|           /* Decrement loop counter */
 | |
|           colCnt--;
 | |
|         }
 | |
| 
 | |
|         /* Store result in destination buffer */
 | |
|         *px++ = sum;
 | |
| 
 | |
|         /* Decrement column loop counter */
 | |
|         col--;
 | |
| 
 | |
|         /* Update pointer pIn2 to point to starting address of next column */
 | |
|         pIn2 = pInB + (numColsB - col);
 | |
| 
 | |
|       } while (col > 0U);
 | |
| 
 | |
|       /* Update pointer pInA to point to starting address of next row */
 | |
|       i = i + numColsB;
 | |
|       pInA = pInA + numColsA;
 | |
| 
 | |
|       /* Decrement row loop counter */
 | |
|       row--;
 | |
| 
 | |
|     } while (row > 0U);
 | |
| 
 | |
|     /* Set status as ARM_MATH_SUCCESS */
 | |
|     status = ARM_MATH_SUCCESS;
 | |
|   }
 | |
| 
 | |
|   /* Return to application */
 | |
|   return (status);
 | |
| }
 | |
| 
 | |
| #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
 | |
| 
 | |
| /**
 | |
|  * @} end of MatrixMult group
 | |
|  */
 | |
| 
 | |
| #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */ 
 | |
| 
 | 
