mirror of
				https://github.com/IcedRooibos/py32f0-template.git
				synced 2025-10-31 01:42:04 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			1193 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1193 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------
 | |
|  * Project:      CMSIS DSP Library
 | |
|  * Title:        arm_cfft_f32.c
 | |
|  * Description:  Combined Radix Decimation in Frequency CFFT Floating point processing function
 | |
|  *
 | |
|  * $Date:        23 April 2021
 | |
|  * $Revision:    V1.9.0
 | |
|  *
 | |
|  * Target Processor: Cortex-M and Cortex-A cores
 | |
|  * -------------------------------------------------------------------- */
 | |
| /*
 | |
|  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the License); you may
 | |
|  * not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  * www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include "dsp/transform_functions.h"
 | |
| #include "arm_common_tables.h"
 | |
| 
 | |
| #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
 | |
| 
 | |
| #include "arm_helium_utils.h"
 | |
| #include "arm_vec_fft.h"
 | |
| #include "arm_mve_tables.h"
 | |
| 
 | |
| 
 | |
| static float32_t arm_inverse_fft_length_f32(uint16_t fftLen)
 | |
| {
 | |
|   float32_t retValue=1.0;
 | |
| 
 | |
|   switch (fftLen)
 | |
|   {
 | |
| 
 | |
|   case 4096U:
 | |
|     retValue = 0.000244140625;
 | |
|     break;
 | |
| 
 | |
|   case 2048U:
 | |
|     retValue = 0.00048828125;
 | |
|     break;
 | |
| 
 | |
|   case 1024U:
 | |
|     retValue = 0.0009765625f;
 | |
|     break;
 | |
| 
 | |
|   case 512U:
 | |
|     retValue = 0.001953125;
 | |
|     break;
 | |
| 
 | |
|   case 256U:
 | |
|     retValue = 0.00390625f;
 | |
|     break;
 | |
| 
 | |
|   case 128U:
 | |
|     retValue = 0.0078125;
 | |
|     break;
 | |
| 
 | |
|   case 64U:
 | |
|     retValue = 0.015625f;
 | |
|     break;
 | |
| 
 | |
|   case 32U:
 | |
|     retValue = 0.03125;
 | |
|     break;
 | |
| 
 | |
|   case 16U:
 | |
|     retValue = 0.0625f;
 | |
|     break;
 | |
| 
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return(retValue);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| static void _arm_radix4_butterfly_f32_mve(const arm_cfft_instance_f32 * S,float32_t * pSrc, uint32_t fftLen)
 | |
| {
 | |
|     f32x4_t     vecTmp0, vecTmp1;
 | |
|     f32x4_t     vecSum0, vecDiff0, vecSum1, vecDiff1;
 | |
|     f32x4_t     vecA, vecB, vecC, vecD;
 | |
|     uint32_t    blkCnt;
 | |
|     uint32_t    n1, n2;
 | |
|     uint32_t    stage = 0;
 | |
|     int32_t     iter = 1;
 | |
|     static const int32_t strides[4] = {
 | |
|         (0 - 16) * (int32_t)sizeof(q31_t *),
 | |
|         (1 - 16) * (int32_t)sizeof(q31_t *),
 | |
|         (8 - 16) * (int32_t)sizeof(q31_t *),
 | |
|         (9 - 16) * (int32_t)sizeof(q31_t *)
 | |
|     };
 | |
| 
 | |
|     n2 = fftLen;
 | |
|     n1 = n2;
 | |
|     n2 >>= 2u;
 | |
|     for (int k = fftLen / 4u; k > 1; k >>= 2)
 | |
|     {
 | |
|         float32_t const     *p_rearranged_twiddle_tab_stride1 =
 | |
|                             &S->rearranged_twiddle_stride1[
 | |
|                             S->rearranged_twiddle_tab_stride1_arr[stage]];
 | |
|         float32_t const     *p_rearranged_twiddle_tab_stride2 =
 | |
|                             &S->rearranged_twiddle_stride2[
 | |
|                             S->rearranged_twiddle_tab_stride2_arr[stage]];
 | |
|         float32_t const     *p_rearranged_twiddle_tab_stride3 =
 | |
|                             &S->rearranged_twiddle_stride3[
 | |
|                             S->rearranged_twiddle_tab_stride3_arr[stage]];
 | |
| 
 | |
|         float32_t * pBase = pSrc;
 | |
|         for (int i = 0; i < iter; i++)
 | |
|         {
 | |
|             float32_t    *inA = pBase;
 | |
|             float32_t    *inB = inA + n2 * CMPLX_DIM;
 | |
|             float32_t    *inC = inB + n2 * CMPLX_DIM;
 | |
|             float32_t    *inD = inC + n2 * CMPLX_DIM;
 | |
|             float32_t const *pW1 = p_rearranged_twiddle_tab_stride1;
 | |
|             float32_t const *pW2 = p_rearranged_twiddle_tab_stride2;
 | |
|             float32_t const *pW3 = p_rearranged_twiddle_tab_stride3;
 | |
|             f32x4_t            vecW;
 | |
| 
 | |
|             blkCnt = n2 / 2;
 | |
|             /*
 | |
|              * load 2 f32 complex pair
 | |
|              */
 | |
|             vecA = vldrwq_f32(inA);
 | |
|             vecC = vldrwq_f32(inC);
 | |
|             while (blkCnt > 0U)
 | |
|             {
 | |
|                 vecB = vldrwq_f32(inB);
 | |
|                 vecD = vldrwq_f32(inD);
 | |
| 
 | |
|                 vecSum0 = vecA + vecC;  /* vecSum0 = vaddq(vecA, vecC) */
 | |
|                 vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
 | |
| 
 | |
|                 vecSum1 = vecB + vecD;
 | |
|                 vecDiff1 = vecB - vecD;
 | |
|                 /*
 | |
|                  * [ 1 1 1 1 ] * [ A B C D ]' .* 1
 | |
|                  */
 | |
|                 vecTmp0 = vecSum0 + vecSum1;
 | |
|                 vst1q(inA, vecTmp0);
 | |
|                 inA += 4;
 | |
| 
 | |
|                 /*
 | |
|                  * [ 1 -1 1 -1 ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = vecSum0 - vecSum1;
 | |
|                 /*
 | |
|                  * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
 | |
|                  */
 | |
|                 vecW = vld1q(pW2);
 | |
|                 pW2 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
 | |
|                 vst1q(inB, vecTmp1);
 | |
|                 inB += 4;
 | |
| 
 | |
|                 /*
 | |
|                  * [ 1 -i -1 +i ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
 | |
|                 /*
 | |
|                  * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
 | |
|                  */
 | |
|                 vecW = vld1q(pW1);
 | |
|                 pW1 +=4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
 | |
|                 vst1q(inC, vecTmp1);
 | |
|                 inC += 4;
 | |
| 
 | |
|                 /*
 | |
|                  * [ 1 +i -1 -i ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
 | |
|                 /*
 | |
|                  * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
 | |
|                  */
 | |
|                 vecW = vld1q(pW3);
 | |
|                 pW3 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
 | |
|                 vst1q(inD, vecTmp1);
 | |
|                 inD += 4;
 | |
| 
 | |
|                 vecA = vldrwq_f32(inA);
 | |
|                 vecC = vldrwq_f32(inC);
 | |
| 
 | |
|                 blkCnt--;
 | |
|             }
 | |
|             pBase +=  CMPLX_DIM * n1;
 | |
|         }
 | |
|         n1 = n2;
 | |
|         n2 >>= 2u;
 | |
|         iter = iter << 2;
 | |
|         stage++;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * start of Last stage process
 | |
|      */
 | |
|     uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
 | |
|     vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
 | |
| 
 | |
|     /* load scheduling */
 | |
|     vecA = vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
 | |
|     vecC = vldrwq_gather_base_f32(vecScGathAddr, 16);
 | |
| 
 | |
|     blkCnt = (fftLen >> 3);
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         vecSum0 = vecA + vecC;  /* vecSum0 = vaddq(vecA, vecC) */
 | |
|         vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
 | |
| 
 | |
|         vecB = vldrwq_gather_base_f32(vecScGathAddr, 8);
 | |
|         vecD = vldrwq_gather_base_f32(vecScGathAddr, 24);
 | |
| 
 | |
|         vecSum1 = vecB + vecD;
 | |
|         vecDiff1 = vecB - vecD;
 | |
| 
 | |
|         /* pre-load for next iteration */
 | |
|         vecA = vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
 | |
|         vecC = vldrwq_gather_base_f32(vecScGathAddr, 16);
 | |
| 
 | |
|         vecTmp0 = vecSum0 + vecSum1;
 | |
|         vstrwq_scatter_base_f32(vecScGathAddr, -64, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = vecSum0 - vecSum1;
 | |
|         vstrwq_scatter_base_f32(vecScGathAddr, -64 + 8, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
 | |
|         vstrwq_scatter_base_f32(vecScGathAddr, -64 + 16, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
 | |
|         vstrwq_scatter_base_f32(vecScGathAddr, -64 + 24, vecTmp0);
 | |
| 
 | |
|         blkCnt--;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * End of last stage process
 | |
|      */
 | |
| }
 | |
| 
 | |
| static void arm_cfft_radix4by2_f32_mve(const arm_cfft_instance_f32 * S, float32_t *pSrc, uint32_t fftLen)
 | |
| {
 | |
|     float32_t const *pCoefVec;
 | |
|     float32_t const  *pCoef = S->pTwiddle;
 | |
|     float32_t        *pIn0, *pIn1;
 | |
|     uint32_t          n2;
 | |
|     uint32_t          blkCnt;
 | |
|     f32x4_t         vecIn0, vecIn1, vecSum, vecDiff;
 | |
|     f32x4_t         vecCmplxTmp, vecTw;
 | |
| 
 | |
| 
 | |
|     n2 = fftLen >> 1;
 | |
|     pIn0 = pSrc;
 | |
|     pIn1 = pSrc + fftLen;
 | |
|     pCoefVec = pCoef;
 | |
| 
 | |
|     blkCnt = n2 / 2;
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         vecIn0 = *(f32x4_t *) pIn0;
 | |
|         vecIn1 = *(f32x4_t *) pIn1;
 | |
|         vecTw = vld1q(pCoefVec);
 | |
|         pCoefVec += 4;
 | |
| 
 | |
|         vecSum = vecIn0 + vecIn1;
 | |
|         vecDiff = vecIn0 - vecIn1;
 | |
| 
 | |
|         vecCmplxTmp = MVE_CMPLX_MULT_FLT_Conj_AxB(vecTw, vecDiff);
 | |
| 
 | |
|         vst1q(pIn0, vecSum);
 | |
|         pIn0 += 4;
 | |
|         vst1q(pIn1, vecCmplxTmp);
 | |
|         pIn1 += 4;
 | |
| 
 | |
|         blkCnt--;
 | |
|     }
 | |
| 
 | |
|     _arm_radix4_butterfly_f32_mve(S, pSrc, n2);
 | |
| 
 | |
|     _arm_radix4_butterfly_f32_mve(S, pSrc + fftLen, n2);
 | |
| 
 | |
|     pIn0 = pSrc;
 | |
| }
 | |
| 
 | |
| static void _arm_radix4_butterfly_inverse_f32_mve(const arm_cfft_instance_f32 * S,float32_t * pSrc, uint32_t fftLen, float32_t onebyfftLen)
 | |
| {
 | |
|     f32x4_t vecTmp0, vecTmp1;
 | |
|     f32x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
 | |
|     f32x4_t vecA, vecB, vecC, vecD;
 | |
|     uint32_t  blkCnt;
 | |
|     uint32_t  n1, n2;
 | |
|     uint32_t  stage = 0;
 | |
|     int32_t  iter = 1;
 | |
|     static const int32_t strides[4] = {
 | |
|         (0 - 16) * (int32_t)sizeof(q31_t *),
 | |
|         (1 - 16) * (int32_t)sizeof(q31_t *),
 | |
|         (8 - 16) * (int32_t)sizeof(q31_t *),
 | |
|         (9 - 16) * (int32_t)sizeof(q31_t *)
 | |
|     };
 | |
| 
 | |
|     n2 = fftLen;
 | |
|     n1 = n2;
 | |
|     n2 >>= 2u;
 | |
|     for (int k = fftLen / 4; k > 1; k >>= 2)
 | |
|     {
 | |
|         float32_t const *p_rearranged_twiddle_tab_stride1 =
 | |
|                 &S->rearranged_twiddle_stride1[
 | |
|                 S->rearranged_twiddle_tab_stride1_arr[stage]];
 | |
|         float32_t const *p_rearranged_twiddle_tab_stride2 =
 | |
|                 &S->rearranged_twiddle_stride2[
 | |
|                 S->rearranged_twiddle_tab_stride2_arr[stage]];
 | |
|         float32_t const *p_rearranged_twiddle_tab_stride3 =
 | |
|                 &S->rearranged_twiddle_stride3[
 | |
|                 S->rearranged_twiddle_tab_stride3_arr[stage]];
 | |
| 
 | |
|         float32_t * pBase = pSrc;
 | |
|         for (int i = 0; i < iter; i++)
 | |
|         {
 | |
|             float32_t    *inA = pBase;
 | |
|             float32_t    *inB = inA + n2 * CMPLX_DIM;
 | |
|             float32_t    *inC = inB + n2 * CMPLX_DIM;
 | |
|             float32_t    *inD = inC + n2 * CMPLX_DIM;
 | |
|             float32_t const *pW1 = p_rearranged_twiddle_tab_stride1;
 | |
|             float32_t const *pW2 = p_rearranged_twiddle_tab_stride2;
 | |
|             float32_t const *pW3 = p_rearranged_twiddle_tab_stride3;
 | |
|             f32x4_t       vecW;
 | |
| 
 | |
|             blkCnt = n2 / 2;
 | |
|             /*
 | |
|              * load 2 f32 complex pair
 | |
|              */
 | |
|             vecA = vldrwq_f32(inA);
 | |
|             vecC = vldrwq_f32(inC);
 | |
|             while (blkCnt > 0U)
 | |
|             {
 | |
|                 vecB = vldrwq_f32(inB);
 | |
|                 vecD = vldrwq_f32(inD);
 | |
| 
 | |
|                 vecSum0 = vecA + vecC;  /* vecSum0 = vaddq(vecA, vecC) */
 | |
|                 vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
 | |
| 
 | |
|                 vecSum1 = vecB + vecD;
 | |
|                 vecDiff1 = vecB - vecD;
 | |
|                 /*
 | |
|                  * [ 1 1 1 1 ] * [ A B C D ]' .* 1
 | |
|                  */
 | |
|                 vecTmp0 = vecSum0 + vecSum1;
 | |
|                 vst1q(inA, vecTmp0);
 | |
|                 inA += 4;
 | |
|                 /*
 | |
|                  * [ 1 -1 1 -1 ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = vecSum0 - vecSum1;
 | |
|                 /*
 | |
|                  * [ 1 -1 1 -1 ] * [ A B C D ]'.* W1
 | |
|                  */
 | |
|                 vecW = vld1q(pW2);
 | |
|                 pW2 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
 | |
|                 vst1q(inB, vecTmp1);
 | |
|                 inB += 4;
 | |
| 
 | |
|                 /*
 | |
|                  * [ 1 -i -1 +i ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
 | |
|                 /*
 | |
|                  * [ 1 -i -1 +i ] * [ A B C D ]'.* W2
 | |
|                  */
 | |
|                 vecW = vld1q(pW1);
 | |
|                 pW1 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
 | |
|                 vst1q(inC, vecTmp1);
 | |
|                 inC += 4;
 | |
| 
 | |
|                 /*
 | |
|                  * [ 1 +i -1 -i ] * [ A B C D ]'
 | |
|                  */
 | |
|                 vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
 | |
|                 /*
 | |
|                  * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
 | |
|                  */
 | |
|                 vecW = vld1q(pW3);
 | |
|                 pW3 += 4;
 | |
|                 vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
 | |
|                 vst1q(inD, vecTmp1);
 | |
|                 inD += 4;
 | |
| 
 | |
|                 vecA = vldrwq_f32(inA);
 | |
|                 vecC = vldrwq_f32(inC);
 | |
| 
 | |
|                 blkCnt--;
 | |
|             }
 | |
|             pBase +=  CMPLX_DIM * n1;
 | |
|         }
 | |
|         n1 = n2;
 | |
|         n2 >>= 2u;
 | |
|         iter = iter << 2;
 | |
|         stage++;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * start of Last stage process
 | |
|      */
 | |
|     uint32x4_t vecScGathAddr = vld1q_u32 ((uint32_t*)strides);
 | |
|     vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
 | |
| 
 | |
|     /*
 | |
|      * load scheduling
 | |
|      */
 | |
|     vecA = vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
 | |
|     vecC = vldrwq_gather_base_f32(vecScGathAddr, 16);
 | |
| 
 | |
|     blkCnt = (fftLen >> 3);
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         vecSum0 = vecA + vecC;  /* vecSum0 = vaddq(vecA, vecC) */
 | |
|         vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
 | |
| 
 | |
|         vecB = vldrwq_gather_base_f32(vecScGathAddr, 8);
 | |
|         vecD = vldrwq_gather_base_f32(vecScGathAddr, 24);
 | |
| 
 | |
|         vecSum1 = vecB + vecD;
 | |
|         vecDiff1 = vecB - vecD;
 | |
| 
 | |
|         vecA = vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
 | |
|         vecC = vldrwq_gather_base_f32(vecScGathAddr, 16);
 | |
| 
 | |
|         vecTmp0 = vecSum0 + vecSum1;
 | |
|         vecTmp0 = vecTmp0 * onebyfftLen;
 | |
|         vstrwq_scatter_base_f32(vecScGathAddr, -64, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = vecSum0 - vecSum1;
 | |
|         vecTmp0 = vecTmp0 * onebyfftLen;
 | |
|         vstrwq_scatter_base_f32(vecScGathAddr, -64 + 8, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
 | |
|         vecTmp0 = vecTmp0 * onebyfftLen;
 | |
|         vstrwq_scatter_base_f32(vecScGathAddr, -64 + 16, vecTmp0);
 | |
| 
 | |
|         vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
 | |
|         vecTmp0 = vecTmp0 * onebyfftLen;
 | |
|         vstrwq_scatter_base_f32(vecScGathAddr, -64 + 24, vecTmp0);
 | |
| 
 | |
|         blkCnt--;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * End of last stage process
 | |
|      */
 | |
| }
 | |
| 
 | |
| static void arm_cfft_radix4by2_inverse_f32_mve(const arm_cfft_instance_f32 * S,float32_t *pSrc, uint32_t fftLen)
 | |
| {
 | |
|     float32_t const *pCoefVec;
 | |
|     float32_t const  *pCoef = S->pTwiddle;
 | |
|     float32_t        *pIn0, *pIn1;
 | |
|     uint32_t          n2;
 | |
|     float32_t         onebyfftLen = arm_inverse_fft_length_f32(fftLen);
 | |
|     uint32_t          blkCnt;
 | |
|     f32x4_t         vecIn0, vecIn1, vecSum, vecDiff;
 | |
|     f32x4_t         vecCmplxTmp, vecTw;
 | |
| 
 | |
| 
 | |
|     n2 = fftLen >> 1;
 | |
|     pIn0 = pSrc;
 | |
|     pIn1 = pSrc + fftLen;
 | |
|     pCoefVec = pCoef;
 | |
| 
 | |
|     blkCnt = n2 / 2;
 | |
|     while (blkCnt > 0U)
 | |
|     {
 | |
|         vecIn0 = *(f32x4_t *) pIn0;
 | |
|         vecIn1 = *(f32x4_t *) pIn1;
 | |
|         vecTw = vld1q(pCoefVec);
 | |
|         pCoefVec += 4;
 | |
| 
 | |
|         vecSum = vecIn0 + vecIn1;
 | |
|         vecDiff = vecIn0 - vecIn1;
 | |
| 
 | |
|         vecCmplxTmp = MVE_CMPLX_MULT_FLT_AxB(vecTw, vecDiff);
 | |
| 
 | |
|         vst1q(pIn0, vecSum);
 | |
|         pIn0 += 4;
 | |
|         vst1q(pIn1, vecCmplxTmp);
 | |
|         pIn1 += 4;
 | |
| 
 | |
|         blkCnt--;
 | |
|     }
 | |
| 
 | |
|     _arm_radix4_butterfly_inverse_f32_mve(S, pSrc, n2, onebyfftLen);
 | |
| 
 | |
|     _arm_radix4_butterfly_inverse_f32_mve(S, pSrc + fftLen, n2, onebyfftLen);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   @addtogroup ComplexFFT
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @brief         Processing function for the floating-point complex FFT.
 | |
|   @param[in]     S              points to an instance of the floating-point CFFT structure
 | |
|   @param[in,out] p1             points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
 | |
|   @param[in]     ifftFlag       flag that selects transform direction
 | |
|                    - value = 0: forward transform
 | |
|                    - value = 1: inverse transform
 | |
|   @param[in]     bitReverseFlag flag that enables / disables bit reversal of output
 | |
|                    - value = 0: disables bit reversal of output
 | |
|                    - value = 1: enables bit reversal of output
 | |
|   @return        none
 | |
|  */
 | |
| 
 | |
| 
 | |
| void arm_cfft_f32(
 | |
|   const arm_cfft_instance_f32 * S,
 | |
|         float32_t * pSrc,
 | |
|         uint8_t ifftFlag,
 | |
|         uint8_t bitReverseFlag)
 | |
| {
 | |
|         uint32_t fftLen = S->fftLen;
 | |
| 
 | |
|         if (ifftFlag == 1U) {
 | |
| 
 | |
|             switch (fftLen) {
 | |
|             case 16:
 | |
|             case 64:
 | |
|             case 256:
 | |
|             case 1024:
 | |
|             case 4096:
 | |
|                 _arm_radix4_butterfly_inverse_f32_mve(S, pSrc, fftLen, arm_inverse_fft_length_f32(S->fftLen));
 | |
|                 break;
 | |
| 
 | |
|             case 32:
 | |
|             case 128:
 | |
|             case 512:
 | |
|             case 2048:
 | |
|                 arm_cfft_radix4by2_inverse_f32_mve(S, pSrc, fftLen);
 | |
|                 break;
 | |
|             }
 | |
|         } else {
 | |
|             switch (fftLen) {
 | |
|             case 16:
 | |
|             case 64:
 | |
|             case 256:
 | |
|             case 1024:
 | |
|             case 4096:
 | |
|                 _arm_radix4_butterfly_f32_mve(S, pSrc, fftLen);
 | |
|                 break;
 | |
| 
 | |
|             case 32:
 | |
|             case 128:
 | |
|             case 512:
 | |
|             case 2048:
 | |
|                 arm_cfft_radix4by2_f32_mve(S, pSrc, fftLen);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
| 
 | |
|         if (bitReverseFlag)
 | |
|         {
 | |
| 
 | |
|             arm_bitreversal_32_inpl_mve((uint32_t*)pSrc, S->bitRevLength, S->pBitRevTable);
 | |
| 
 | |
|         }
 | |
| }
 | |
| 
 | |
| 
 | |
| #else
 | |
| extern void arm_radix8_butterfly_f32(
 | |
|         float32_t * pSrc,
 | |
|         uint16_t fftLen,
 | |
|   const float32_t * pCoef,
 | |
|         uint16_t twidCoefModifier);
 | |
| 
 | |
| extern void arm_bitreversal_32(
 | |
|         uint32_t * pSrc,
 | |
|   const uint16_t bitRevLen,
 | |
|   const uint16_t * pBitRevTable);
 | |
| 
 | |
| /**
 | |
|   @ingroup groupTransforms
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @defgroup ComplexFFT Complex FFT Functions
 | |
| 
 | |
|   @par
 | |
|                    The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
 | |
|                    Discrete Fourier Transform (DFT).  The FFT can be orders of magnitude faster
 | |
|                    than the DFT, especially for long lengths.
 | |
|                    The algorithms described in this section
 | |
|                    operate on complex data.  A separate set of functions is devoted to handling
 | |
|                    of real sequences.
 | |
|   @par
 | |
|                    There are separate algorithms for handling floating-point, Q15, and Q31 data
 | |
|                    types.  The algorithms available for each data type are described next.
 | |
|   @par
 | |
|                    The FFT functions operate in-place.  That is, the array holding the input data
 | |
|                    will also be used to hold the corresponding result.  The input data is complex
 | |
|                    and contains <code>2*fftLen</code> interleaved values as shown below.
 | |
|                    <pre>{real[0], imag[0], real[1], imag[1], ...} </pre>
 | |
|                    The FFT result will be contained in the same array and the frequency domain
 | |
|                    values will have the same interleaving.
 | |
| 
 | |
|   @par Floating-point
 | |
|                    The floating-point complex FFT uses a mixed-radix algorithm.  Multiple radix-8
 | |
|                    stages are performed along with a single radix-2 or radix-4 stage, as needed.
 | |
|                    The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
 | |
|                    a different twiddle factor table.
 | |
|   @par
 | |
|                    The function uses the standard FFT definition and output values may grow by a
 | |
|                    factor of <code>fftLen</code> when computing the forward transform.  The
 | |
|                    inverse transform includes a scale of <code>1/fftLen</code> as part of the
 | |
|                    calculation and this matches the textbook definition of the inverse FFT.
 | |
|   @par
 | |
|                    For the MVE version, the new arm_cfft_init_f32 initialization function is
 | |
|                    <b>mandatory</b>. <b>Compilation flags are available to include only the required tables for the
 | |
|                    needed FFTs.</b> Other FFT versions can continue to be initialized as
 | |
|                    explained below.
 | |
|   @par
 | |
|                    For not MVE versions, pre-initialized data structures containing twiddle factors
 | |
|                    and bit reversal tables are provided and defined in <code>arm_const_structs.h</code>.  Include
 | |
|                    this header in your function and then pass one of the constant structures as
 | |
|                    an argument to arm_cfft_f32.  For example:
 | |
|   @par
 | |
|                    <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
 | |
|   @par
 | |
|                    computes a 64-point inverse complex FFT including bit reversal.
 | |
|                    The data structures are treated as constant data and not modified during the
 | |
|                    calculation.  The same data structure can be reused for multiple transforms
 | |
|                    including mixing forward and inverse transforms.
 | |
|   @par
 | |
|                    Earlier releases of the library provided separate radix-2 and radix-4
 | |
|                    algorithms that operated on floating-point data.  These functions are still
 | |
|                    provided but are deprecated.  The older functions are slower and less general
 | |
|                    than the new functions.
 | |
|   @par
 | |
|                    An example of initialization of the constants for the arm_cfft_f32 function follows:
 | |
|   @code
 | |
|                    const static arm_cfft_instance_f32 *S;
 | |
|                    ...
 | |
|                      switch (length) {
 | |
|                        case 16:
 | |
|                          S = &arm_cfft_sR_f32_len16;
 | |
|                          break;
 | |
|                        case 32:
 | |
|                          S = &arm_cfft_sR_f32_len32;
 | |
|                          break;
 | |
|                        case 64:
 | |
|                          S = &arm_cfft_sR_f32_len64;
 | |
|                          break;
 | |
|                        case 128:
 | |
|                          S = &arm_cfft_sR_f32_len128;
 | |
|                          break;
 | |
|                        case 256:
 | |
|                          S = &arm_cfft_sR_f32_len256;
 | |
|                          break;
 | |
|                        case 512:
 | |
|                          S = &arm_cfft_sR_f32_len512;
 | |
|                          break;
 | |
|                        case 1024:
 | |
|                          S = &arm_cfft_sR_f32_len1024;
 | |
|                          break;
 | |
|                        case 2048:
 | |
|                          S = &arm_cfft_sR_f32_len2048;
 | |
|                          break;
 | |
|                        case 4096:
 | |
|                          S = &arm_cfft_sR_f32_len4096;
 | |
|                          break;
 | |
|                      }
 | |
|   @endcode
 | |
|   @par
 | |
|                    The new arm_cfft_init_f32 can also be used.
 | |
|   @par Q15 and Q31
 | |
|                    The floating-point complex FFT uses a mixed-radix algorithm.  Multiple radix-4
 | |
|                    stages are performed along with a single radix-2 stage, as needed.
 | |
|                    The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
 | |
|                    a different twiddle factor table.
 | |
|   @par
 | |
|                    The function uses the standard FFT definition and output values may grow by a
 | |
|                    factor of <code>fftLen</code> when computing the forward transform.  The
 | |
|                    inverse transform includes a scale of <code>1/fftLen</code> as part of the
 | |
|                    calculation and this matches the textbook definition of the inverse FFT.
 | |
|   @par
 | |
|                    Pre-initialized data structures containing twiddle factors and bit reversal
 | |
|                    tables are provided and defined in <code>arm_const_structs.h</code>.  Include
 | |
|                    this header in your function and then pass one of the constant structures as
 | |
|                    an argument to arm_cfft_q31. For example:
 | |
|   @par
 | |
|                    <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
 | |
|   @par
 | |
|                    computes a 64-point inverse complex FFT including bit reversal.
 | |
|                    The data structures are treated as constant data and not modified during the
 | |
|                    calculation.  The same data structure can be reused for multiple transforms
 | |
|                    including mixing forward and inverse transforms.
 | |
|   @par
 | |
|                    Earlier releases of the library provided separate radix-2 and radix-4
 | |
|                    algorithms that operated on floating-point data.  These functions are still
 | |
|                    provided but are deprecated.  The older functions are slower and less general
 | |
|                    than the new functions.
 | |
|   @par
 | |
|                    An example of initialization of the constants for the arm_cfft_q31 function follows:
 | |
|   @code
 | |
|                    const static arm_cfft_instance_q31 *S;
 | |
|                    ...
 | |
|                      switch (length) {
 | |
|                        case 16:
 | |
|                          S = &arm_cfft_sR_q31_len16;
 | |
|                          break;
 | |
|                        case 32:
 | |
|                          S = &arm_cfft_sR_q31_len32;
 | |
|                          break;
 | |
|                        case 64:
 | |
|                          S = &arm_cfft_sR_q31_len64;
 | |
|                          break;
 | |
|                        case 128:
 | |
|                          S = &arm_cfft_sR_q31_len128;
 | |
|                          break;
 | |
|                        case 256:
 | |
|                          S = &arm_cfft_sR_q31_len256;
 | |
|                          break;
 | |
|                        case 512:
 | |
|                          S = &arm_cfft_sR_q31_len512;
 | |
|                          break;
 | |
|                        case 1024:
 | |
|                          S = &arm_cfft_sR_q31_len1024;
 | |
|                          break;
 | |
|                        case 2048:
 | |
|                          S = &arm_cfft_sR_q31_len2048;
 | |
|                          break;
 | |
|                        case 4096:
 | |
|                          S = &arm_cfft_sR_q31_len4096;
 | |
|                          break;
 | |
|                      }
 | |
|   @endcode
 | |
| 
 | |
|  */
 | |
| 
 | |
| void arm_cfft_radix8by2_f32 (arm_cfft_instance_f32 * S, float32_t * p1)
 | |
| {
 | |
|   uint32_t    L  = S->fftLen;
 | |
|   float32_t * pCol1, * pCol2, * pMid1, * pMid2;
 | |
|   float32_t * p2 = p1 + L;
 | |
|   const float32_t * tw = (float32_t *) S->pTwiddle;
 | |
|   float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
 | |
|   float32_t m0, m1, m2, m3;
 | |
|   uint32_t l;
 | |
| 
 | |
|   pCol1 = p1;
 | |
|   pCol2 = p2;
 | |
| 
 | |
|   /* Define new length */
 | |
|   L >>= 1;
 | |
| 
 | |
|   /* Initialize mid pointers */
 | |
|   pMid1 = p1 + L;
 | |
|   pMid2 = p2 + L;
 | |
| 
 | |
|   /* do two dot Fourier transform */
 | |
|   for (l = L >> 2; l > 0; l-- )
 | |
|   {
 | |
|     t1[0] = p1[0];
 | |
|     t1[1] = p1[1];
 | |
|     t1[2] = p1[2];
 | |
|     t1[3] = p1[3];
 | |
| 
 | |
|     t2[0] = p2[0];
 | |
|     t2[1] = p2[1];
 | |
|     t2[2] = p2[2];
 | |
|     t2[3] = p2[3];
 | |
| 
 | |
|     t3[0] = pMid1[0];
 | |
|     t3[1] = pMid1[1];
 | |
|     t3[2] = pMid1[2];
 | |
|     t3[3] = pMid1[3];
 | |
| 
 | |
|     t4[0] = pMid2[0];
 | |
|     t4[1] = pMid2[1];
 | |
|     t4[2] = pMid2[2];
 | |
|     t4[3] = pMid2[3];
 | |
| 
 | |
|     *p1++ = t1[0] + t2[0];
 | |
|     *p1++ = t1[1] + t2[1];
 | |
|     *p1++ = t1[2] + t2[2];
 | |
|     *p1++ = t1[3] + t2[3];    /* col 1 */
 | |
| 
 | |
|     t2[0] = t1[0] - t2[0];
 | |
|     t2[1] = t1[1] - t2[1];
 | |
|     t2[2] = t1[2] - t2[2];
 | |
|     t2[3] = t1[3] - t2[3];    /* for col 2 */
 | |
| 
 | |
|     *pMid1++ = t3[0] + t4[0];
 | |
|     *pMid1++ = t3[1] + t4[1];
 | |
|     *pMid1++ = t3[2] + t4[2];
 | |
|     *pMid1++ = t3[3] + t4[3]; /* col 1 */
 | |
| 
 | |
|     t4[0] = t4[0] - t3[0];
 | |
|     t4[1] = t4[1] - t3[1];
 | |
|     t4[2] = t4[2] - t3[2];
 | |
|     t4[3] = t4[3] - t3[3];    /* for col 2 */
 | |
| 
 | |
|     twR = *tw++;
 | |
|     twI = *tw++;
 | |
| 
 | |
|     /* multiply by twiddle factors */
 | |
|     m0 = t2[0] * twR;
 | |
|     m1 = t2[1] * twI;
 | |
|     m2 = t2[1] * twR;
 | |
|     m3 = t2[0] * twI;
 | |
| 
 | |
|     /* R  =  R  *  Tr - I * Ti */
 | |
|     *p2++ = m0 + m1;
 | |
|     /* I  =  I  *  Tr + R * Ti */
 | |
|     *p2++ = m2 - m3;
 | |
| 
 | |
|     /* use vertical symmetry */
 | |
|     /*  0.9988 - 0.0491i <==> -0.0491 - 0.9988i */
 | |
|     m0 = t4[0] * twI;
 | |
|     m1 = t4[1] * twR;
 | |
|     m2 = t4[1] * twI;
 | |
|     m3 = t4[0] * twR;
 | |
| 
 | |
|     *pMid2++ = m0 - m1;
 | |
|     *pMid2++ = m2 + m3;
 | |
| 
 | |
|     twR = *tw++;
 | |
|     twI = *tw++;
 | |
| 
 | |
|     m0 = t2[2] * twR;
 | |
|     m1 = t2[3] * twI;
 | |
|     m2 = t2[3] * twR;
 | |
|     m3 = t2[2] * twI;
 | |
| 
 | |
|     *p2++ = m0 + m1;
 | |
|     *p2++ = m2 - m3;
 | |
| 
 | |
|     m0 = t4[2] * twI;
 | |
|     m1 = t4[3] * twR;
 | |
|     m2 = t4[3] * twI;
 | |
|     m3 = t4[2] * twR;
 | |
| 
 | |
|     *pMid2++ = m0 - m1;
 | |
|     *pMid2++ = m2 + m3;
 | |
|   }
 | |
| 
 | |
|   /* first col */
 | |
|   arm_radix8_butterfly_f32 (pCol1, L, (float32_t *) S->pTwiddle, 2U);
 | |
| 
 | |
|   /* second col */
 | |
|   arm_radix8_butterfly_f32 (pCol2, L, (float32_t *) S->pTwiddle, 2U);
 | |
| }
 | |
| 
 | |
| void arm_cfft_radix8by4_f32 (arm_cfft_instance_f32 * S, float32_t * p1)
 | |
| {
 | |
|     uint32_t    L  = S->fftLen >> 1;
 | |
|     float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
 | |
|     const float32_t *tw2, *tw3, *tw4;
 | |
|     float32_t * p2 = p1 + L;
 | |
|     float32_t * p3 = p2 + L;
 | |
|     float32_t * p4 = p3 + L;
 | |
|     float32_t t2[4], t3[4], t4[4], twR, twI;
 | |
|     float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1;
 | |
|     float32_t m0, m1, m2, m3;
 | |
|     uint32_t l, twMod2, twMod3, twMod4;
 | |
| 
 | |
|     pCol1 = p1;         /* points to real values by default */
 | |
|     pCol2 = p2;
 | |
|     pCol3 = p3;
 | |
|     pCol4 = p4;
 | |
|     pEnd1 = p2 - 1;     /* points to imaginary values by default */
 | |
|     pEnd2 = p3 - 1;
 | |
|     pEnd3 = p4 - 1;
 | |
|     pEnd4 = pEnd3 + L;
 | |
| 
 | |
|     tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle;
 | |
| 
 | |
|     L >>= 1;
 | |
| 
 | |
|     /* do four dot Fourier transform */
 | |
| 
 | |
|     twMod2 = 2;
 | |
|     twMod3 = 4;
 | |
|     twMod4 = 6;
 | |
| 
 | |
|     /* TOP */
 | |
|     p1ap3_0 = p1[0] + p3[0];
 | |
|     p1sp3_0 = p1[0] - p3[0];
 | |
|     p1ap3_1 = p1[1] + p3[1];
 | |
|     p1sp3_1 = p1[1] - p3[1];
 | |
| 
 | |
|     /* col 2 */
 | |
|     t2[0] = p1sp3_0 + p2[1] - p4[1];
 | |
|     t2[1] = p1sp3_1 - p2[0] + p4[0];
 | |
|     /* col 3 */
 | |
|     t3[0] = p1ap3_0 - p2[0] - p4[0];
 | |
|     t3[1] = p1ap3_1 - p2[1] - p4[1];
 | |
|     /* col 4 */
 | |
|     t4[0] = p1sp3_0 - p2[1] + p4[1];
 | |
|     t4[1] = p1sp3_1 + p2[0] - p4[0];
 | |
|     /* col 1 */
 | |
|     *p1++ = p1ap3_0 + p2[0] + p4[0];
 | |
|     *p1++ = p1ap3_1 + p2[1] + p4[1];
 | |
| 
 | |
|     /* Twiddle factors are ones */
 | |
|     *p2++ = t2[0];
 | |
|     *p2++ = t2[1];
 | |
|     *p3++ = t3[0];
 | |
|     *p3++ = t3[1];
 | |
|     *p4++ = t4[0];
 | |
|     *p4++ = t4[1];
 | |
| 
 | |
|     tw2 += twMod2;
 | |
|     tw3 += twMod3;
 | |
|     tw4 += twMod4;
 | |
| 
 | |
|     for (l = (L - 2) >> 1; l > 0; l-- )
 | |
|     {
 | |
|       /* TOP */
 | |
|       p1ap3_0 = p1[0] + p3[0];
 | |
|       p1sp3_0 = p1[0] - p3[0];
 | |
|       p1ap3_1 = p1[1] + p3[1];
 | |
|       p1sp3_1 = p1[1] - p3[1];
 | |
|       /* col 2 */
 | |
|       t2[0] = p1sp3_0 + p2[1] - p4[1];
 | |
|       t2[1] = p1sp3_1 - p2[0] + p4[0];
 | |
|       /* col 3 */
 | |
|       t3[0] = p1ap3_0 - p2[0] - p4[0];
 | |
|       t3[1] = p1ap3_1 - p2[1] - p4[1];
 | |
|       /* col 4 */
 | |
|       t4[0] = p1sp3_0 - p2[1] + p4[1];
 | |
|       t4[1] = p1sp3_1 + p2[0] - p4[0];
 | |
|       /* col 1 - top */
 | |
|       *p1++ = p1ap3_0 + p2[0] + p4[0];
 | |
|       *p1++ = p1ap3_1 + p2[1] + p4[1];
 | |
| 
 | |
|       /* BOTTOM */
 | |
|       p1ap3_1 = pEnd1[-1] + pEnd3[-1];
 | |
|       p1sp3_1 = pEnd1[-1] - pEnd3[-1];
 | |
|       p1ap3_0 = pEnd1[ 0] + pEnd3[0];
 | |
|       p1sp3_0 = pEnd1[ 0] - pEnd3[0];
 | |
|       /* col 2 */
 | |
|       t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1;
 | |
|       t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
 | |
|       /* col 3 */
 | |
|       t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
 | |
|       t3[3] = p1ap3_0 - pEnd2[ 0] - pEnd4[ 0];
 | |
|       /* col 4 */
 | |
|       t4[2] = pEnd2[ 0] - pEnd4[ 0] - p1sp3_1;
 | |
|       t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
 | |
|       /* col 1 - Bottom */
 | |
|       *pEnd1-- = p1ap3_0 + pEnd2[ 0] + pEnd4[ 0];
 | |
|       *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
 | |
| 
 | |
|       /* COL 2 */
 | |
|       /* read twiddle factors */
 | |
|       twR = *tw2++;
 | |
|       twI = *tw2++;
 | |
|       /* multiply by twiddle factors */
 | |
|       /*  let    Z1 = a + i(b),   Z2 = c + i(d) */
 | |
|       /*   =>  Z1 * Z2  =  (a*c - b*d) + i(b*c + a*d) */
 | |
| 
 | |
|       /* Top */
 | |
|       m0 = t2[0] * twR;
 | |
|       m1 = t2[1] * twI;
 | |
|       m2 = t2[1] * twR;
 | |
|       m3 = t2[0] * twI;
 | |
| 
 | |
|       *p2++ = m0 + m1;
 | |
|       *p2++ = m2 - m3;
 | |
|       /* use vertical symmetry col 2 */
 | |
|       /* 0.9997 - 0.0245i  <==>  0.0245 - 0.9997i */
 | |
|       /* Bottom */
 | |
|       m0 = t2[3] * twI;
 | |
|       m1 = t2[2] * twR;
 | |
|       m2 = t2[2] * twI;
 | |
|       m3 = t2[3] * twR;
 | |
| 
 | |
|       *pEnd2-- = m0 - m1;
 | |
|       *pEnd2-- = m2 + m3;
 | |
| 
 | |
|       /* COL 3 */
 | |
|       twR = tw3[0];
 | |
|       twI = tw3[1];
 | |
|       tw3 += twMod3;
 | |
|       /* Top */
 | |
|       m0 = t3[0] * twR;
 | |
|       m1 = t3[1] * twI;
 | |
|       m2 = t3[1] * twR;
 | |
|       m3 = t3[0] * twI;
 | |
| 
 | |
|       *p3++ = m0 + m1;
 | |
|       *p3++ = m2 - m3;
 | |
|       /* use vertical symmetry col 3 */
 | |
|       /* 0.9988 - 0.0491i  <==>  -0.9988 - 0.0491i */
 | |
|       /* Bottom */
 | |
|       m0 = -t3[3] * twR;
 | |
|       m1 =  t3[2] * twI;
 | |
|       m2 =  t3[2] * twR;
 | |
|       m3 =  t3[3] * twI;
 | |
| 
 | |
|       *pEnd3-- = m0 - m1;
 | |
|       *pEnd3-- = m3 - m2;
 | |
| 
 | |
|       /* COL 4 */
 | |
|       twR = tw4[0];
 | |
|       twI = tw4[1];
 | |
|       tw4 += twMod4;
 | |
|       /* Top */
 | |
|       m0 = t4[0] * twR;
 | |
|       m1 = t4[1] * twI;
 | |
|       m2 = t4[1] * twR;
 | |
|       m3 = t4[0] * twI;
 | |
| 
 | |
|       *p4++ = m0 + m1;
 | |
|       *p4++ = m2 - m3;
 | |
|       /* use vertical symmetry col 4 */
 | |
|       /* 0.9973 - 0.0736i  <==>  -0.0736 + 0.9973i */
 | |
|       /* Bottom */
 | |
|       m0 = t4[3] * twI;
 | |
|       m1 = t4[2] * twR;
 | |
|       m2 = t4[2] * twI;
 | |
|       m3 = t4[3] * twR;
 | |
| 
 | |
|       *pEnd4-- = m0 - m1;
 | |
|       *pEnd4-- = m2 + m3;
 | |
|     }
 | |
| 
 | |
|     /* MIDDLE */
 | |
|     /* Twiddle factors are */
 | |
|     /*  1.0000  0.7071-0.7071i  -1.0000i  -0.7071-0.7071i */
 | |
|     p1ap3_0 = p1[0] + p3[0];
 | |
|     p1sp3_0 = p1[0] - p3[0];
 | |
|     p1ap3_1 = p1[1] + p3[1];
 | |
|     p1sp3_1 = p1[1] - p3[1];
 | |
| 
 | |
|     /* col 2 */
 | |
|     t2[0] = p1sp3_0 + p2[1] - p4[1];
 | |
|     t2[1] = p1sp3_1 - p2[0] + p4[0];
 | |
|     /* col 3 */
 | |
|     t3[0] = p1ap3_0 - p2[0] - p4[0];
 | |
|     t3[1] = p1ap3_1 - p2[1] - p4[1];
 | |
|     /* col 4 */
 | |
|     t4[0] = p1sp3_0 - p2[1] + p4[1];
 | |
|     t4[1] = p1sp3_1 + p2[0] - p4[0];
 | |
|     /* col 1 - Top */
 | |
|     *p1++ = p1ap3_0 + p2[0] + p4[0];
 | |
|     *p1++ = p1ap3_1 + p2[1] + p4[1];
 | |
| 
 | |
|     /* COL 2 */
 | |
|     twR = tw2[0];
 | |
|     twI = tw2[1];
 | |
| 
 | |
|     m0 = t2[0] * twR;
 | |
|     m1 = t2[1] * twI;
 | |
|     m2 = t2[1] * twR;
 | |
|     m3 = t2[0] * twI;
 | |
| 
 | |
|     *p2++ = m0 + m1;
 | |
|     *p2++ = m2 - m3;
 | |
|     /* COL 3 */
 | |
|     twR = tw3[0];
 | |
|     twI = tw3[1];
 | |
| 
 | |
|     m0 = t3[0] * twR;
 | |
|     m1 = t3[1] * twI;
 | |
|     m2 = t3[1] * twR;
 | |
|     m3 = t3[0] * twI;
 | |
| 
 | |
|     *p3++ = m0 + m1;
 | |
|     *p3++ = m2 - m3;
 | |
|     /* COL 4 */
 | |
|     twR = tw4[0];
 | |
|     twI = tw4[1];
 | |
| 
 | |
|     m0 = t4[0] * twR;
 | |
|     m1 = t4[1] * twI;
 | |
|     m2 = t4[1] * twR;
 | |
|     m3 = t4[0] * twI;
 | |
| 
 | |
|     *p4++ = m0 + m1;
 | |
|     *p4++ = m2 - m3;
 | |
| 
 | |
|     /* first col */
 | |
|     arm_radix8_butterfly_f32 (pCol1, L, (float32_t *) S->pTwiddle, 4U);
 | |
| 
 | |
|     /* second col */
 | |
|     arm_radix8_butterfly_f32 (pCol2, L, (float32_t *) S->pTwiddle, 4U);
 | |
| 
 | |
|     /* third col */
 | |
|     arm_radix8_butterfly_f32 (pCol3, L, (float32_t *) S->pTwiddle, 4U);
 | |
| 
 | |
|     /* fourth col */
 | |
|     arm_radix8_butterfly_f32 (pCol4, L, (float32_t *) S->pTwiddle, 4U);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   @addtogroup ComplexFFT
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   @brief         Processing function for the floating-point complex FFT.
 | |
|   @param[in]     S              points to an instance of the floating-point CFFT structure
 | |
|   @param[in,out] p1             points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
 | |
|   @param[in]     ifftFlag       flag that selects transform direction
 | |
|                    - value = 0: forward transform
 | |
|                    - value = 1: inverse transform
 | |
|   @param[in]     bitReverseFlag flag that enables / disables bit reversal of output
 | |
|                    - value = 0: disables bit reversal of output
 | |
|                    - value = 1: enables bit reversal of output
 | |
|   @return        none
 | |
|  */
 | |
| 
 | |
| void arm_cfft_f32(
 | |
|   const arm_cfft_instance_f32 * S,
 | |
|         float32_t * p1,
 | |
|         uint8_t ifftFlag,
 | |
|         uint8_t bitReverseFlag)
 | |
| {
 | |
|   uint32_t  L = S->fftLen, l;
 | |
|   float32_t invL, * pSrc;
 | |
| 
 | |
|   if (ifftFlag == 1U)
 | |
|   {
 | |
|     /* Conjugate input data */
 | |
|     pSrc = p1 + 1;
 | |
|     for (l = 0; l < L; l++)
 | |
|     {
 | |
|       *pSrc = -*pSrc;
 | |
|       pSrc += 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (L)
 | |
|   {
 | |
|   case 16:
 | |
|   case 128:
 | |
|   case 1024:
 | |
|     arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1);
 | |
|     break;
 | |
|   case 32:
 | |
|   case 256:
 | |
|   case 2048:
 | |
|     arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1);
 | |
|     break;
 | |
|   case 64:
 | |
|   case 512:
 | |
|   case 4096:
 | |
|     arm_radix8_butterfly_f32 ( p1, L, (float32_t *) S->pTwiddle, 1);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if ( bitReverseFlag )
 | |
|     arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable);
 | |
| 
 | |
|   if (ifftFlag == 1U)
 | |
|   {
 | |
|     invL = 1.0f / (float32_t)L;
 | |
| 
 | |
|     /* Conjugate and scale output data */
 | |
|     pSrc = p1;
 | |
|     for (l= 0; l < L; l++)
 | |
|     {
 | |
|       *pSrc++ *=   invL ;
 | |
|       *pSrc    = -(*pSrc) * invL;
 | |
|       pSrc++;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
 | |
| 
 | |
| /**
 | |
|   @} end of ComplexFFT group
 | |
|  */
 | 
