Merge pull request #18 from kholia/nRF24L01_Wireless_F003_SOP16

feat: add nRF24L01_Wireless_F003_SOP16 TX example
This commit is contained in:
IOsetting 2023-07-11 09:25:49 +08:00 committed by GitHub
commit dda4d78497
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 1217 additions and 0 deletions

View File

@ -0,0 +1,128 @@
##### Project #####
PROJECT ?= app
# The path for generated files
BUILD_DIR = Build
##### Options #####
# Use LL library instead of HAL, y:yes, n:no
USE_LL_LIB ?= y
# Enable printf float %f support, y:yes, n:no
ENABLE_PRINTF_FLOAT ?= n
# Build with FreeRTOS, y:yes, n:no
USE_FREERTOS ?= n
# Build with CMSIS DSP functions, y:yes, n:no
USE_DSP ?= n
# Build with Waveshare e-paper lib, y:yes, n:no
USE_EPAPER ?= n
# Programmer, jlink or pyocd
FLASH_PROGRM ?= jlink
##### Toolchains #######
#ARM_TOOCHAIN ?= /opt/gcc-arm/gcc-arm-11.2-2022.02-x86_64-arm-none-eabi/bin
#ARM_TOOCHAIN ?= /opt/gcc-arm/arm-gnu-toolchain-11.3.rel1-x86_64-arm-none-eabi/bin
ARM_TOOCHAIN ?= /opt/gcc-arm/arm-gnu-toolchain-12.2.rel1-x86_64-arm-none-eabi/bin
# path to JLinkExe
JLINKEXE ?= /opt/SEGGER/JLink/JLinkExe
# JLink device type, options:
# PY32F002AX5,
# PY32F003X4, PY32F003X6, PY32F003X8,
# PY32F030X4, PY32F030X6, PY32F030X7, PY32F030X8
JLINK_DEVICE ?= PY32F003X6
# path to PyOCD,
PYOCD_EXE ?= pyocd
# PyOCD device type, options:
# py32f002ax5,
# py32f003x4, py32f003x6, py32f003x8,
# py32f030x3, py32f030x4, py32f030x6, py32f030x7, py32f030x8
# py32f072xb
PYOCD_DEVICE ?= py32f003x6
##### Paths ############
# Link descript file: py32f002ax5.ld, py32f003x6.ld, py32f003x8.ld, py32f030x6.ld, py32f030x8.ld
LDSCRIPT = Libraries/LDScripts/py32f003x6.ld
# Library build flags:
# PY32F002Ax5,
# PY32F003x4, PY32F003x6, PY32F003x8,
# PY32F030x3, PY32F030x4, PY32F030x6, PY32F030x7, PY32F030x8,
# PY32F072xB
LIB_FLAGS = PY32F003x6
# C source folders
CDIRS := User \
Libraries/CMSIS/Device/PY32F0xx/Source
# C source files (if there are any single ones)
CFILES :=
# ASM source folders
ADIRS := User
# ASM single files
AFILES := Libraries/CMSIS/Device/PY32F0xx/Source/gcc/startup_py32f003.s
# Include paths
INCLUDES := Libraries/CMSIS/Core/Include \
Libraries/CMSIS/Device/PY32F0xx/Include \
User
ifeq ($(USE_LL_LIB),y)
CDIRS += Libraries/PY32F0xx_LL_Driver/Src \
Libraries/BSP_LL/Src
INCLUDES += Libraries/PY32F0xx_LL_Driver/Inc \
Libraries/BSP_LL/Inc
LIB_FLAGS += USE_FULL_LL_DRIVER
else
CDIRS += Libraries/PY32F0xx_HAL_Driver/Src \
Libraries/BSP/Src
INCLUDES += Libraries/PY32F0xx_HAL_Driver/Inc \
Libraries/BSP/Inc
endif
ifeq ($(USE_FREERTOS),y)
CDIRS += Libraries/FreeRTOS \
Libraries/FreeRTOS/portable/GCC/ARM_CM0
CFILES += Libraries/FreeRTOS/portable/MemMang/heap_4.c
INCLUDES += Libraries/FreeRTOS/include \
Libraries/FreeRTOS/portable/GCC/ARM_CM0
endif
ifeq ($(USE_DSP),y)
CFILES += Libraries/CMSIS/DSP/Source/BasicMathFunctions/BasicMathFunctions.c \
Libraries/CMSIS/DSP/Source/BayesFunctions/BayesFunctions.c \
Libraries/CMSIS/DSP/Source/CommonTables/CommonTables.c \
Libraries/CMSIS/DSP/Source/ComplexMathFunctions/ComplexMathFunctions.c \
Libraries/CMSIS/DSP/Source/ControllerFunctions/ControllerFunctions.c \
Libraries/CMSIS/DSP/Source/DistanceFunctions/DistanceFunctions.c \
Libraries/CMSIS/DSP/Source/FastMathFunctions/FastMathFunctions.c \
Libraries/CMSIS/DSP/Source/FilteringFunctions/FilteringFunctions.c \
Libraries/CMSIS/DSP/Source/InterpolationFunctions/InterpolationFunctions.c \
Libraries/CMSIS/DSP/Source/MatrixFunctions/MatrixFunctions.c \
Libraries/CMSIS/DSP/Source/QuaternionMathFunctions/QuaternionMathFunctions.c \
Libraries/CMSIS/DSP/Source/StatisticsFunctions/StatisticsFunctions.c \
Libraries/CMSIS/DSP/Source/SupportFunctions/SupportFunctions.c \
Libraries/CMSIS/DSP/Source/SVMFunctions/SVMFunctions.c \
Libraries/CMSIS/DSP/Source/TransformFunctions/TransformFunctions.c
INCLUDES += Libraries/CMSIS/DSP/Include \
Libraries/CMSIS/DSP/PrivateInclude
endif
ifeq ($(USE_EPAPER),y)
CDIRS += Libraries/EPaper/Lib \
Libraries/EPaper/Examples \
Libraries/EPaper/Fonts \
Libraries/EPaper/GUI
INCLUDES += Libraries/EPaper/Lib \
Libraries/EPaper/Examples \
Libraries/EPaper/Fonts \
Libraries/EPaper/GUI
endif
include ./rules.mk

View File

@ -0,0 +1,9 @@
Copy the `Makefile` from this folder to the root folder of this repository to
run this example on the 'PY32F003W16S6TU SOP16' chip.
You can check that the nRF24L01+ module is transmitting by following methods:
- Listen around 2.440 GHz using an SDR.
- Monitor the USB in-line power meter to see that the current consumtion is
increasing during transmissions.

View File

@ -0,0 +1,178 @@
/***
* Demo: nRF24L01
*
* PY32 nRF24L01
* PA0 ------> MISO
* PA1 ------> CLK/SCK
* PA4 ------> IRQ
* PA5 ------> CE
* PA6 ------> CSN
* PA7 ------> MOSI
*
* PA2 ------> TX
* PA3 ------> RX
*/
#include <string.h>
#include "main.h"
#include "py32f0xx_bsp_clock.h"
#include "py32f0xx_bsp_printf.h"
#include "nrf24l01.h"
/* Mode options: MODE_TX, MODE_RX, MODE_RX_INT */
#define MODE_TX 0
#define MODE_TX_FAST 1
#define MODE_RX 2
#define MODE_RX_INT 3
#define NRF24_MODE MODE_TX
/* Payload width options: fixed or dynamic */
#define PAYLOAD_WIDTH_MODE_FIXED 0
#define PAYLOAD_WIDTH_MODE_DYNAMIC 1
#define NRF24_PAYLOAD_WIDTH_MODE PAYLOAD_WIDTH_MODE_FIXED
#if (NRF24_MODE == MODE_TX || NRF24_MODE == MODE_TX_FAST)
uint8_t payload[] = {
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
0x21, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x28,
0x31, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x38,
0x41, 0x12, 0x13, 0x14, 0x15, 0x16, 0x47, 0x48};
#endif
uint8_t RX_ADDRESS[NRF24L01_ADDR_WIDTH] = {0x32,0x4E,0x6F,0x64,0x65};
uint8_t TX_ADDRESS[NRF24L01_ADDR_WIDTH] = {0x32,0x4E,0x6F,0x64,0x22};
extern uint8_t RX_BUF[];
extern uint8_t TX_BUF[];
static void APP_GPIOConfig(void);
static void APP_SPIConfig(void);
int main(void)
{
/* Set clock = 8MHz */
BSP_RCC_HSI_8MConfig();
/* Enable peripheral clock */
LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOA | LL_IOP_GRP1_PERIPH_GPIOB);
BSP_USART_Config(115200);
printf("SPI Demo: nRF24L01 Wireless\r\nClock: %ld\r\n", SystemCoreClock);
APP_GPIOConfig();
APP_SPIConfig();
NRF24L01_Init();
printf("nRF24L01 initialized\r\n");
while (NRF24L01_Check() != 0)
{
printf("nRF24L01 check: error\r\n");
LL_mDelay(2000);
}
printf("nRF24L01 check: succ\r\n");
uint8_t length = 0;
printf("nRF24L01 in TX mode\r\n");
NRF24L01_TX_Mode(RX_ADDRESS, TX_ADDRESS);
NRF24L01_DumpConfig();
while(1)
{
length = 32;
NRF24L01_TxPacket(payload, length);
LL_mDelay(5);
}
}
uint8_t SPI_TxRxByte(uint8_t data)
{
uint8_t SPITimeout = 0xFF;
// Check the status of Transmit buffer Empty flag
while (READ_BIT(SPI1->SR, SPI_SR_TXE) == RESET)
{
if (SPITimeout-- == 0) return 0;
}
LL_SPI_TransmitData8(SPI1, data);
SPITimeout = 0xFF;
while (READ_BIT(SPI1->SR, SPI_SR_RXNE) == RESET)
{
if (SPITimeout-- == 0) return 0;
}
// Read from RX buffer
return LL_SPI_ReceiveData8(SPI1);
}
static void APP_GPIOConfig(void)
{
LL_GPIO_InitTypeDef GPIO_InitStruct;
// PA6 CSN
LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_6, LL_GPIO_MODE_OUTPUT);
// PA5 CE
LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_5, LL_GPIO_MODE_OUTPUT);
/* PA4 as input */
GPIO_InitStruct.Pin = LL_GPIO_PIN_4;
GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/**
* SPI1 Alternative Function Pins
* SPI1_SCK: PA1_AF0, PA2_AF10, PA5_AF0, PA9_AF10, PB3_AF0
* SPI1_MISO: PA0_AF10, PA6_AF0, PA7_AF10, PA11_AF0, PA13_AF10, PB4_AF0
* SPI1_MOSI: PA1_AF10, PA2_AF0, PA3_AF10, PA7_AF0, PA8_AF10, PA12_AF0, PB5_AF0
* SPI1_NSS: PA4_AF0, PA10_AF10, PA15_AF0, PB0_AF0, PF1_AF10, PF3_AF10
*/
static void APP_SPIConfig(void)
{
LL_SPI_InitTypeDef SPI_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
LL_APB1_GRP2_EnableClock(LL_APB1_GRP2_PERIPH_SPI1);
// PA1 SCK
GPIO_InitStruct.Pin = LL_GPIO_PIN_1;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
// PA0 MISO
GPIO_InitStruct.Pin = LL_GPIO_PIN_0;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_10;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
// PA7 MOSI
GPIO_InitStruct.Pin = LL_GPIO_PIN_7;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX;
SPI_InitStruct.Mode = LL_SPI_MODE_MASTER;
SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT;
SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW;
SPI_InitStruct.ClockPhase = LL_SPI_PHASE_1EDGE;
SPI_InitStruct.NSS = LL_SPI_NSS_SOFT;
SPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV4;
SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST;
LL_SPI_Init(SPI1, &SPI_InitStruct);
LL_SPI_Enable(SPI1);
}
void APP_ErrorHandler(void)
{
while (1);
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line)
{
while (1);
}
#endif /* USE_FULL_ASSERT */

View File

@ -0,0 +1,28 @@
#ifndef __MAIN_H
#define __MAIN_H
#ifdef __cplusplus
extern "C" {
#endif
#include "py32f0xx_ll_bus.h"
#include "py32f0xx_ll_cortex.h"
#include "py32f0xx_ll_dma.h"
#include "py32f0xx_ll_exti.h"
#include "py32f0xx_ll_gpio.h"
#include "py32f0xx_ll_pwr.h"
#include "py32f0xx_ll_rcc.h"
#include "py32f0xx_ll_spi.h"
#include "py32f0xx_ll_system.h"
#include "py32f0xx_ll_tim.h"
#include "py32f0xx_ll_utils.h"
void APP_ErrorHandler(void);
uint8_t SPI_TxRxByte(uint8_t data);
#ifdef __cplusplus
}
#endif
#endif /* __MAIN_H */

View File

@ -0,0 +1,589 @@
#include <stdio.h>
#include "nrf24l01.h"
#include "py32f0xx_bsp_printf.h"
uint8_t RX_BUF[NRF24L01_PLOAD_WIDTH];
uint8_t TX_BUF[NRF24L01_PLOAD_WIDTH];
void NRF24L01_Init(void)
{
CSN_HIGH;
}
/**
* Read a 1-bit register
*/
uint8_t NRF24L01_Read_Reg(uint8_t reg)
{
uint8_t value;
CSN_LOW;
SPI_TxRxByte(reg);
value = SPI_TxRxByte(NRF24L01_CMD_NOP);
CSN_HIGH;
return value;
}
/**
* Write a 1-byte register
*/
uint8_t NRF24L01_Write_Reg(uint8_t reg, uint8_t value)
{
uint8_t status;
CSN_LOW;
if (reg < NRF24L01_CMD_W_REGISTER)
{
// This is a register access
status = SPI_TxRxByte(NRF24L01_CMD_W_REGISTER | (reg & NRF24L01_MASK_REG_MAP));
SPI_TxRxByte(value);
}
else
{
// This is a single byte command or future command/register
status = SPI_TxRxByte(reg);
if ((reg != NRF24L01_CMD_FLUSH_TX)
&& (reg != NRF24L01_CMD_FLUSH_RX)
&& (reg != NRF24L01_CMD_REUSE_TX_PL)
&& (reg != NRF24L01_CMD_NOP)) {
// Send register value
SPI_TxRxByte(value);
}
}
CSN_HIGH;
return status;
}
/**
* Read a multi-byte register
* reg - register to read
* buf - pointer to the buffer to write
* len - number of bytes to read
*/
uint8_t NRF24L01_Read_To_Buf(uint8_t reg, uint8_t *buf, uint8_t len)
{
CSN_LOW;
uint8_t status = SPI_TxRxByte(reg);
while (len--)
{
*buf++ = SPI_TxRxByte(NRF24L01_CMD_NOP);
}
CSN_HIGH;
return status;
}
/**
* Write a multi-byte register
* reg - register to write
* buf - pointer to the buffer with data
* len - number of bytes to write
*/
uint8_t NRF24L01_Write_From_Buf(uint8_t reg, const uint8_t *buf, uint8_t len)
{
CSN_LOW;
uint8_t status = SPI_TxRxByte(reg);
while (len--)
{
SPI_TxRxByte(*buf++);
}
CSN_HIGH;
return status;
}
uint8_t NRF24L01_Check(void)
{
uint8_t rxbuf[5];
uint8_t i;
uint8_t *ptr = (uint8_t *)NRF24L01_TEST_ADDR;
// Write test TX address and read TX_ADDR register
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER | NRF24L01_REG_TX_ADDR, ptr, 5);
NRF24L01_Read_To_Buf(NRF24L01_CMD_R_REGISTER | NRF24L01_REG_TX_ADDR, rxbuf, 5);
// Compare buffers, return error on first mismatch
for (i = 0; i < 5; i++)
{
if (rxbuf[i] != *ptr++) return 1;
}
return 0;
}
/**
* Flush the RX FIFO
*/
void NRF24L01_FlushRX(void)
{
NRF24L01_Write_Reg(NRF24L01_CMD_FLUSH_RX, NRF24L01_CMD_NOP);
}
/**
* Flush the TX FIFO
*/
void NRF24L01_FlushTX(void)
{
NRF24L01_Write_Reg(NRF24L01_CMD_FLUSH_TX, NRF24L01_CMD_NOP);
}
void NRF24L01_ResetTX(void)
{
NRF24L01_Write_Reg(NRF24L01_REG_STATUS, NRF24L01_FLAG_MAX_RT); // Clear max retry flag
CE_LOW;
CE_HIGH;
}
/**
* Clear IRQ bit of the STATUS register
* reg - NRF24L01_FLAG_RX_DREADY
* NRF24L01_FLAG_TX_DSENT
* NRF24L01_FLAG_MAX_RT
*/
void NRF24L01_ClearIRQFlag(uint8_t reg)
{
NRF24L01_Write_Reg(NRF24L01_REG_STATUS, reg);
}
/**
* Clear RX_DR, TX_DS and MAX_RT bits of the STATUS register
*/
void NRF24L01_ClearIRQFlags(void)
{
uint8_t reg;
reg = NRF24L01_Read_Reg(NRF24L01_REG_STATUS);
reg |= NRF24L01_MASK_STATUS_IRQ;
NRF24L01_Write_Reg(NRF24L01_REG_STATUS, reg);
}
/**
* Common configurations of RX and TX, internal function
*/
void _NRF24L01_Config(uint8_t *tx_addr)
{
// TX Address
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER + NRF24L01_REG_TX_ADDR, tx_addr, NRF24L01_ADDR_WIDTH);
// RX P0 Payload Width
NRF24L01_Write_Reg(NRF24L01_REG_RX_PW_P0, NRF24L01_PLOAD_WIDTH);
// Enable Auto ACK
NRF24L01_Write_Reg(NRF24L01_REG_EN_AA, 0x3f);
// Enable RX channels
NRF24L01_Write_Reg(NRF24L01_REG_EN_RXADDR, 0x3f);
// RF channel: 2.400G + 0.001 * x
NRF24L01_Write_Reg(NRF24L01_REG_RF_CH, 40);
// Format: 000+0+[0:1Mbps,1:2Mbps]+[00:-18dbm,01:-12dbm,10:-6dbm,11:0dbm]+[0:LNA_OFF,1:LNA_ON]
// 01:1Mbps,-18dbm; 03:1Mbps,-12dbm; 05:1Mbps,-6dbm; 07:1Mbps,0dBm
// 09:2Mbps,-18dbm; 0b:2Mbps,-12dbm; 0d:2Mbps,-6dbm; 0f:2Mbps,0dBm,
NRF24L01_Write_Reg(NRF24L01_REG_RF_SETUP, 0x03);
// 0A:delay=250us,count=10, 1A:delay=500us,count=10
NRF24L01_Write_Reg(NRF24L01_REG_SETUP_RETR, 0x0a);
}
/**
* Switch NRF24L01 to RX mode
*/
void NRF24L01_RX_Mode(uint8_t *rx_addr, uint8_t *tx_addr)
{
CE_LOW;
_NRF24L01_Config(tx_addr);
// RX Address of P0
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER + NRF24L01_REG_RX_ADDR_P0, rx_addr, NRF24L01_ADDR_WIDTH);
/**
REG 0x00:
0)PRIM_RX 0:TX 1:RX
1)PWR_UP 0:OFF 1:ON
2)CRCO 0:8bit CRC 1:16bit CRC
3)EN_CRC Enabled if any of EN_AA is high
4)MASK_MAX_RT 0:IRQ low 1:NO IRQ
5)MASK_TX_DS 0:IRQ low 1:NO IRQ
6)MASK_RX_DR 0:IRQ low 1:NO IRQ
7)Reserved 0
*/
NRF24L01_Write_Reg(NRF24L01_REG_CONFIG, 0x0f); //RX,PWR_UP,CRC16,EN_CRC
CE_HIGH;
NRF24L01_FlushRX();
}
/**
* Switch NRF24L01 to TX mode
*/
void NRF24L01_TX_Mode(uint8_t *rx_addr, uint8_t *tx_addr)
{
CE_LOW;
_NRF24L01_Config(tx_addr);
// On the PTX the **TX_ADDR** must be the same as the **RX_ADDR_P0** and as the pipe address for the designated pipe
// RX_ADDR_P0 will be used for receiving ACK
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_REGISTER + NRF24L01_REG_RX_ADDR_P0, tx_addr, NRF24L01_ADDR_WIDTH);
NRF24L01_Write_Reg(NRF24L01_REG_CONFIG, 0x0e); //TX,PWR_UP,CRC16,EN_CRC
CE_HIGH;
}
uint8_t NRF24L01_RX_GetPayloadWidth(void)
{
uint8_t value;
CSN_LOW;
value = NRF24L01_Read_Reg(NRF24L01_CMD_R_RX_PL_WID);
CSN_HIGH;
return value;
}
uint8_t NRF24L01_RXFIFO_GetStatus(void)
{
uint8_t reg = NRF24L01_Read_Reg(NRF24L01_REG_FIFO_STATUS);
return (reg & NRF24L01_MASK_RXFIFO);
}
uint8_t NRF24L01_ReadPayload(uint8_t *pBuf, uint8_t *length, uint8_t dpl)
{
uint8_t status, pipe;
// Extract a payload pipe number from the STATUS register
status = NRF24L01_Read_Reg(NRF24L01_REG_STATUS);
pipe = (status & NRF24L01_MASK_RX_P_NO) >> 1;
// RX FIFO empty?
if (pipe < 6)
{
if (dpl)
{
// Get payload width
*length = NRF24L01_RX_GetPayloadWidth();
if (*length > 32)
{
// Error
*length = 0;
NRF24L01_FlushRX();
}
}
else
{
*length = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P0 + pipe);
}
// Read a payload from the RX FIFO
if (*length)
{
NRF24L01_Read_To_Buf(NRF24L01_CMD_R_RX_PAYLOAD, pBuf, *length);
}
return pipe;
}
// pipe value = 110: Not Used, 111: RX FIFO Empty
*length = 0;
return pipe;
}
/**
* Send data in tx_buf and wait till data is sent or max re-tr reached
*/
uint8_t NRF24L01_TxPacket(uint8_t *tx_buf, uint8_t len)
{
uint8_t status = 0x00;
CE_LOW;
len = len > NRF24L01_PLOAD_WIDTH? NRF24L01_PLOAD_WIDTH : len;
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_TX_PAYLOAD, tx_buf, len);
CE_HIGH;
while(IRQ != 0); // Waiting send finish
CE_LOW;
status = NRF24L01_Read_Reg(NRF24L01_REG_STATUS);
BSP_UART_TxHex8(status);
BSP_UART_TxChar(':');
if(status & NRF24L01_FLAG_TX_DS)
{
BSP_UART_TxString("Data sent: ");
for (uint8_t i = 0; i < len; i++) {
BSP_UART_TxHex8(tx_buf[i]);
}
BSP_UART_TxString("\r\n");
NRF24L01_ClearIRQFlag(NRF24L01_FLAG_TX_DS);
}
else if(status & NRF24L01_FLAG_MAX_RT)
{
BSP_UART_TxString("Sending exceeds max retries\r\n");
NRF24L01_FlushTX();
NRF24L01_ClearIRQFlag(NRF24L01_FLAG_MAX_RT);
}
CE_HIGH;
return status;
}
void NRF24L01_TxPacketFast(const void *pBuf, uint8_t len)
{
NRF24L01_Write_From_Buf(NRF24L01_CMD_W_TX_PAYLOAD, pBuf, len);
CE_HIGH;
}
uint8_t NRF24L01_TxFast(const void *pBuf, uint8_t len)
{
uint8_t status;
// Blocking only if FIFO is full. This will loop and block until TX is successful or fail
do
{
status = NRF24L01_Read_Reg(NRF24L01_REG_STATUS);
if (status & NRF24L01_FLAG_MAX_RT)
{
return 1;
}
} while (status & NRF24L01_FLAG_TX_FULL);
NRF24L01_TxPacketFast(pBuf, len);
return 0;
}
void NRF24L01_ToggleFeatures(void)
{
CSN_LOW;
NRF24L01_Write_Reg(NRF24L01_CMD_ACTIVATE, 0x73);
CSN_HIGH;
}
void NRF24L01_SetEnableDynamicPayloads(uint8_t mode)
{
uint8_t reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if (mode == 0)
{
// Disable dynamic payload throughout the system
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg & (~NRF24L01_FEATURE_EN_DPL));
// If it didn't work, the features are not enabled
reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if ((reg & NRF24L01_FEATURE_EN_DPL) != 0)
{
// Enable them and try again
NRF24L01_ToggleFeatures();
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg & (~NRF24L01_FEATURE_EN_DPL));
}
// Disable dynamic payload on all pipes
NRF24L01_Write_Reg(NRF24L01_REG_DYNPD, 0);
}
else
{
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_DPL);
reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if ((reg & NRF24L01_FEATURE_EN_DPL) != NRF24L01_FEATURE_EN_DPL)
{
NRF24L01_ToggleFeatures();
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_DPL);
}
// Enable dynamic payload on all pipes
NRF24L01_Write_Reg(NRF24L01_REG_DYNPD, NRF24L01_DYNPD_DPL_P0 | NRF24L01_DYNPD_DPL_P1
| NRF24L01_DYNPD_DPL_P2 | NRF24L01_DYNPD_DPL_P3 | NRF24L01_DYNPD_DPL_P4 | NRF24L01_DYNPD_DPL_P5);
}
}
void NRF24L01_SetEnableAckPayload(uint8_t mode)
{
uint8_t reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if (mode == 0)
{
// Disable ack payload and dynamic payload features
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg &(~NRF24L01_FEATURE_EN_ACK_PAY));
// If it didn't work, the features are not enabled
reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if ((reg & NRF24L01_FEATURE_EN_ACK_PAY) != NRF24L01_FEATURE_EN_ACK_PAY)
{
// Enable them and try again
NRF24L01_ToggleFeatures();
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg &(~NRF24L01_FEATURE_EN_ACK_PAY));
}
}
else
{
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_ACK_PAY);
reg = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
if ((reg & NRF24L01_FEATURE_EN_ACK_PAY) != NRF24L01_FEATURE_EN_ACK_PAY)
{
NRF24L01_ToggleFeatures();
NRF24L01_Write_Reg(NRF24L01_REG_FEATURE, reg | NRF24L01_FEATURE_EN_ACK_PAY);
}
// Enable dynamic payload on pipes 0 & 1
reg = NRF24L01_Read_Reg(NRF24L01_REG_DYNPD);
NRF24L01_Write_Reg(NRF24L01_REG_DYNPD, reg | NRF24L01_DYNPD_DPL_P0 | NRF24L01_DYNPD_DPL_P1);
}
}
/**
* Dump nRF24L01 configuration
*/
void NRF24L01_DumpConfig(void) {
uint8_t i,j;
uint8_t aw;
uint8_t buf[5];
// CONFIG
i = NRF24L01_Read_Reg(NRF24L01_REG_CONFIG);
printf("[0x%02X] 0x%02X MASK:%02X CRC:%02X PWR:%s MODE:P%s\r\n",
NRF24L01_REG_CONFIG,
i,
i >> 4,
(i & 0x0c) >> 2,
(i & 0x02) ? "ON" : "OFF",
(i & 0x01) ? "RX" : "TX"
);
// EN_AA
i = NRF24L01_Read_Reg(NRF24L01_REG_EN_AA);
printf("[0x%02X] 0x%02X ENAA: ",NRF24L01_REG_EN_AA,i);
for (j = 0; j < 6; j++) {
printf("[P%1u%s]%s",j,
(i & (1 << j)) ? "+" : "-",
(j == 5) ? "\r\n" : " "
);
}
// EN_RXADDR
i = NRF24L01_Read_Reg(NRF24L01_REG_EN_RXADDR);
printf("[0x%02X] 0x%02X EN_RXADDR: ",NRF24L01_REG_EN_RXADDR,i);
for (j = 0; j < 6; j++) {
printf("[P%1u%s]%s",j,
(i & (1 << j)) ? "+" : "-",
(j == 5) ? "\r\n" : " "
);
}
// SETUP_AW
i = NRF24L01_Read_Reg(NRF24L01_REG_SETUP_AW);
aw = (i & 0x03) + 2;
printf("[0x%02X] 0x%02X EN_RXADDR=%03X (address width = %u)\r\n",NRF24L01_REG_SETUP_AW,i,i & 0x03,aw);
// SETUP_RETR
i = NRF24L01_Read_Reg(NRF24L01_REG_SETUP_RETR);
printf("[0x%02X] 0x%02X ARD=%04X ARC=%04X (retr.delay=%uus, count=%u)\r\n",
NRF24L01_REG_SETUP_RETR,
i,
i >> 4,
i & 0x0F,
((i >> 4) * 250) + 250,
i & 0x0F
);
// RF_CH
i = NRF24L01_Read_Reg(NRF24L01_REG_RF_CH);
printf("[0x%02X] 0x%02X (%.3uGHz)\r\n",NRF24L01_REG_RF_CH,i,2400 + i);
// RF_SETUP
i = NRF24L01_Read_Reg(NRF24L01_REG_RF_SETUP);
printf("[0x%02X] 0x%02X CONT_WAVE:%s PLL_LOCK:%s DataRate=",
NRF24L01_REG_RF_SETUP,
i,
(i & 0x80) ? "ON" : "OFF",
(i & 0x80) ? "ON" : "OFF"
);
switch ((i & 0x28) >> 3) {
case 0x00:
printf("1M");
break;
case 0x01:
printf("2M");
break;
case 0x04:
printf("250k");
break;
default:
printf("???");
break;
}
printf("pbs RF_PWR=");
switch ((i & 0x06) >> 1) {
case 0x00:
printf("-18");
break;
case 0x01:
printf("-12");
break;
case 0x02:
printf("-6");
break;
case 0x03:
printf("0");
break;
default:
printf("???");
break;
}
printf("dBm\r\n");
// STATUS
i = NRF24L01_Read_Reg(NRF24L01_REG_STATUS);
printf("[0x%02X] 0x%02X IRQ:%03X RX_PIPE:%u TX_FULL:%s\r\n",
NRF24L01_REG_STATUS,
i,
(i & 0x70) >> 4,
(i & 0x0E) >> 1,
(i & 0x01) ? "YES" : "NO"
);
// OBSERVE_TX
i = NRF24L01_Read_Reg(NRF24L01_REG_OBSERVE_TX);
printf("[0x%02X] 0x%02X PLOS_CNT=%u ARC_CNT=%u\r\n",NRF24L01_REG_OBSERVE_TX,i,i >> 4,i & 0x0F);
// RPD
i = NRF24L01_Read_Reg(NRF24L01_REG_RPD);
printf("[0x%02X] 0x%02X RPD=%s\r\n",NRF24L01_REG_RPD,i,(i & 0x01) ? "YES" : "NO");
// RX_ADDR_P0
NRF24L01_Read_To_Buf(NRF24L01_REG_RX_ADDR_P0,buf,aw);
printf("[0x%02X] RX_ADDR_P0 \"",NRF24L01_REG_RX_ADDR_P0);
for (i = 0; i < aw; i++) printf("%X ",buf[i]);
printf("\"\r\n");
// RX_ADDR_P1
NRF24L01_Read_To_Buf(NRF24L01_REG_RX_ADDR_P1,buf,aw);
printf("[0x%02X] RX_ADDR_P1 \"",NRF24L01_REG_RX_ADDR_P1);
for (i = 0; i < aw; i++) printf("%X ",buf[i]);
printf("\"\r\n");
// RX_ADDR_P2
printf("[0x%02X] RX_ADDR_P2 \"",NRF24L01_REG_RX_ADDR_P2);
for (i = 0; i < aw - 1; i++) printf("%X ",buf[i]);
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_ADDR_P2);
printf("%X\"\r\n",i);
// RX_ADDR_P3
printf("[0x%02X] RX_ADDR_P3 \"",NRF24L01_REG_RX_ADDR_P3);
for (i = 0; i < aw - 1; i++) printf("%X ",buf[i]);
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_ADDR_P3);
printf("%X\"\r\n",i);
// RX_ADDR_P4
printf("[0x%02X] RX_ADDR_P4 \"",NRF24L01_REG_RX_ADDR_P4);
for (i = 0; i < aw - 1; i++) printf("%X ",buf[i]);
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_ADDR_P4);
printf("%X\"\r\n",i);
// RX_ADDR_P5
printf("[0x%02X] RX_ADDR_P5 \"",NRF24L01_REG_RX_ADDR_P5);
for (i = 0; i < aw - 1; i++) printf("%X ",buf[i]);
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_ADDR_P5);
printf("%X\"\r\n",i);
// TX_ADDR
NRF24L01_Read_To_Buf(NRF24L01_REG_TX_ADDR,buf,aw);
printf("[0x%02X] TX_ADDR \"",NRF24L01_REG_TX_ADDR);
for (i = 0; i < aw; i++) printf("%X ",buf[i]);
printf("\"\r\n");
// RX_PW_P0
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P0);
printf("[0x%02X] RX_PW_P0=%u\r\n",NRF24L01_REG_RX_PW_P0,i);
// RX_PW_P1
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P1);
printf("[0x%02X] RX_PW_P1=%u\r\n",NRF24L01_REG_RX_PW_P1,i);
// RX_PW_P2
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P2);
printf("[0x%02X] RX_PW_P2=%u\r\n",NRF24L01_REG_RX_PW_P2,i);
// RX_PW_P3
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P3);
printf("[0x%02X] RX_PW_P3=%u\r\n",NRF24L01_REG_RX_PW_P3,i);
// RX_PW_P4
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P4);
printf("[0x%02X] RX_PW_P4=%u\r\n",NRF24L01_REG_RX_PW_P4,i);
// RX_PW_P5
i = NRF24L01_Read_Reg(NRF24L01_REG_RX_PW_P5);
printf("[0x%02X] RX_PW_P5=%u\r\n",NRF24L01_REG_RX_PW_P5,i);
// NRF24L01_REG_FIFO_STATUS
i = NRF24L01_Read_Reg(NRF24L01_REG_FIFO_STATUS);
printf("[0x%02X] FIFO_STATUS=0x%02x\r\n",NRF24L01_REG_FIFO_STATUS,i);
// NRF24L01_REG_DYNPD
i = NRF24L01_Read_Reg(NRF24L01_REG_DYNPD);
printf("[0x%02X] DYNPD=0x%02x\r\n",NRF24L01_REG_DYNPD,i);
// NRF24L01_REG_FEATURE
i = NRF24L01_Read_Reg(NRF24L01_REG_FEATURE);
printf("[0x%02X] FEATURE=0x%02x\r\n",NRF24L01_REG_FEATURE,i);
}

View File

@ -0,0 +1,226 @@
#ifndef _NRF24L01_H
#define _NRF24L01_H
#include <main.h>
// CE Pin & CSN Pin & IRQ Pin
#define CSN_HIGH LL_GPIO_SetOutputPin(GPIOA, LL_GPIO_PIN_6)
#define CSN_LOW LL_GPIO_ResetOutputPin(GPIOA, LL_GPIO_PIN_6)
#define CE_HIGH LL_GPIO_SetOutputPin(GPIOA, LL_GPIO_PIN_5)
#define CE_LOW LL_GPIO_ResetOutputPin(GPIOA, LL_GPIO_PIN_5)
#define IRQ READ_BIT(GPIOA->IDR, LL_GPIO_PIN_4)
// SPI(nRF24L01) commands
#define NRF24L01_CMD_R_REGISTER 0x00 // Register read
#define NRF24L01_CMD_W_REGISTER 0x20 // Register write
/**
* ACTIVATE. For NRF24L01 only, removed from NRF24L01+ product specs
* - https://github.com/nRF24/RF24/issues/401
*
* This write command followed by data 0x73 activates the following features: R_RX_PL_WID, W_ACK_PAYLOAD, W_TX_PAYLOAD_NOACK.
* A new ACTIVATE command with the same data deactivates them again. This is executable in power down or stand by modes only.
*/
#define NRF24L01_CMD_ACTIVATE 0x50 // (De)Activates R_RX_PL_WID, W_ACK_PAYLOAD, W_TX_PAYLOAD_NOACK features
#define NRF24L01_CMD_R_RX_PL_WID 0x60 // Read RX-payload width for the top R_RX_PAYLOAD in the RX FIFO. Flush RX FIFO if the read value is larger than 32 bytes
#define NRF24L01_CMD_R_RX_PAYLOAD 0x61 // Read RX payload
#define NRF24L01_CMD_W_TX_PAYLOAD 0xA0 // Write TX payload
#define NRF24L01_CMD_W_ACK_PAYLOAD 0xA8 // 1010 1PPP, Used in RX mode. Write Payload to be transmitted together with ACK packet on PIPE PPP. (PPP valid in the range from 000 to 101)
#define NRF24L01_CMD_W_TX_PAYLOAD_NOACK 0xB0 // Used in TX mode. Disables AUTOACK on this specific packet
#define NRF24L01_CMD_FLUSH_TX 0xE1 // Flush TX FIFO
#define NRF24L01_CMD_FLUSH_RX 0xE2 // Flush RX FIFO
#define NRF24L01_CMD_REUSE_TX_PL 0xE3 // Reuse TX payload
#define NRF24L01_CMD_LOCK_UNLOCK 0x50 // Lock/unlock exclusive features
#define NRF24L01_CMD_NOP 0xFF // No operation (used for reading status register)
// SPI(nRF24L01) register address definitions
#define NRF24L01_REG_CONFIG 0x00 // Configuration register
#define NRF24L01_REG_EN_AA 0x01 // Enable "Auto acknowledgment"
#define NRF24L01_REG_EN_RXADDR 0x02 // Enable RX addresses
#define NRF24L01_REG_SETUP_AW 0x03 // Setup of address widths
#define NRF24L01_REG_SETUP_RETR 0x04 // Setup of automatic re-transmit
#define NRF24L01_REG_RF_CH 0x05 // RF channel
#define NRF24L01_REG_RF_SETUP 0x06 // RF setup
#define NRF24L01_REG_STATUS 0x07 // Status register
#define NRF24L01_REG_OBSERVE_TX 0x08 // Transmit observe register
#define NRF24L01_REG_RPD 0x09 // Received power detector
#define NRF24L01_REG_RX_ADDR_P0 0x0A // Receive address data pipe 0
#define NRF24L01_REG_RX_ADDR_P1 0x0B // Receive address data pipe 1
#define NRF24L01_REG_RX_ADDR_P2 0x0C // Receive address data pipe 2
#define NRF24L01_REG_RX_ADDR_P3 0x0D // Receive address data pipe 3
#define NRF24L01_REG_RX_ADDR_P4 0x0E // Receive address data pipe 4
#define NRF24L01_REG_RX_ADDR_P5 0x0F // Receive address data pipe 5
#define NRF24L01_REG_TX_ADDR 0x10 // Transmit address
#define NRF24L01_REG_RX_PW_P0 0x11 // Number of bytes in RX payload in data pipe 0
#define NRF24L01_REG_RX_PW_P1 0x12 // Number of bytes in RX payload in data pipe 1
#define NRF24L01_REG_RX_PW_P2 0x13 // Number of bytes in RX payload in data pipe 2
#define NRF24L01_REG_RX_PW_P3 0x14 // Number of bytes in RX payload in data pipe 3
#define NRF24L01_REG_RX_PW_P4 0x15 // Number of bytes in RX payload in data pipe 4
#define NRF24L01_REG_RX_PW_P5 0x16 // Number of bytes in RX payload in data pipe 5
#define NRF24L01_REG_FIFO_STATUS 0x17 // FIFO status register
#define NRF24L01_REG_DYNPD 0x1C // Enable dynamic payload length
#define NRF24L01_REG_FEATURE 0x1D // Feature register
// Register bits definitions
#define NRF24L01_CONFIG_PRIM_RX 0x01 // PRIM_RX bit in CONFIG register
#define NRF24L01_CONFIG_PWR_UP 0x02 // PWR_UP bit in CONFIG register
// Enable dynamic payload length on data pipes
#define NRF24L01_DYNPD_DPL_P5 0x20
#define NRF24L01_DYNPD_DPL_P4 0x10
#define NRF24L01_DYNPD_DPL_P3 0x08
#define NRF24L01_DYNPD_DPL_P2 0x04
#define NRF24L01_DYNPD_DPL_P1 0x02
#define NRF24L01_DYNPD_DPL_P0 0x01
/**
* EN_DYN_ACK - this bit enables the W_TX_PAYLOAD_NOACK command
*
* The PTX can set the NO_ACK flag bit in the Packet Control Field with this command: W_TX_PAYLOAD_NOACK
* However, the function must first be enabled in the FEATURE register by setting the EN_DYN_ACK bit.
* When you use this option the PTX goes directly to standby-I mode after transmitting the packet. The PRX
* does not transmit an ACK packet when it receives the packet.
*/
#define NRF24L01_FEATURE_EN_DYN_ACK 0x01 // EN_DYN_ACK bit in FEATURE register
/**
* EN_ACK_PAY - Enables Payload with ACK
* If ACK packet payload is activated, ACK packets have dynamic payload lengths and the Dynamic Payload
* Length feature should be enabled for pipe 0 on the PTX and PRX. This is to ensure that they receive the
* ACK packets with payloads. If the ACK payload is more than 15 byte in 2Mbps mode the ARD must be
* 500µS or more, and if the ACK payload is more than 5 byte in 1Mbps mode the ARD must be 500µS or
* more. In 250kbps mode (even when the payload is not in ACK) the ARD must be 500µS or more.
*/
#define NRF24L01_FEATURE_EN_ACK_PAY 0x02 // EN_ACK_PAY bit in FEATURE register
#define NRF24L01_FEATURE_EN_DPL 0x04 // EN_DPL bit in FEATURE register, enables Dynamic Payload Length
// Status Flags
#define NRF24L01_FLAG_RX_DR 0x40 // RX_DR bit (data ready RX FIFO interrupt)
#define NRF24L01_FLAG_TX_DS 0x20 // TX_DS bit (data sent TX FIFO interrupt)
#define NRF24L01_FLAG_MAX_RT 0x10 // MAX_RT bit (maximum number of TX re-transmits interrupt)
#define NRF24L01_FLAG_IT_BITS 0x70 // RX_DR|TX_DS|MAX_RT
#define NRF24L01_FLAG_TX_FULL 0x01 // TX FIFO full flag. 1: TX FIFO full. 0: Available locations in TX FIFO
// Register masks definitions
#define NRF24L01_MASK_REG_MAP 0x1F // Mask bits[4:0] for CMD_RREG and CMD_WREG commands
#define NRF24L01_MASK_CRC 0x0C // Mask for CRC bits [3:2] in CONFIG register
#define NRF24L01_MASK_STATUS_IRQ 0x70 // Mask for all IRQ bits in STATUS register
#define NRF24L01_MASK_RF_PWR 0x06 // Mask RF_PWR[2:1] bits in RF_SETUP register
#define NRF24L01_MASK_RX_P_NO 0x0E // Mask RX_P_NO[3:1] bits in STATUS register
#define NRF24L01_MASK_DATARATE 0x28 // Mask RD_DR_[5,3] bits in RF_SETUP register
#define NRF24L01_MASK_EN_RX 0x3F // Mask ERX_P[5:0] bits in EN_RXADDR register
#define NRF24L01_MASK_RX_PW 0x3F // Mask [5:0] bits in RX_PW_Px register
#define NRF24L01_MASK_RETR_ARD 0xF0 // Mask for ARD[7:4] bits in SETUP_RETR register
#define NRF24L01_MASK_RETR_ARC 0x0F // Mask for ARC[3:0] bits in SETUP_RETR register
#define NRF24L01_MASK_RXFIFO 0x03 // Mask for RX FIFO status bits [1:0] in FIFO_STATUS register
#define NRF24L01_MASK_TXFIFO 0x30 // Mask for TX FIFO status bits [5:4] in FIFO_STATUS register
#define NRF24L01_MASK_PLOS_CNT 0xF0 // Mask for PLOS_CNT[7:4] bits in OBSERVE_TX register
#define NRF24L01_MASK_ARC_CNT 0x0F // Mask for ARC_CNT[3:0] bits in OBSERVE_TX register
// Register masks definitions
#define NRF24L01_MASK_REG_MAP 0x1F // Mask bits[4:0] for CMD_RREG and CMD_WREG commands
// RXFIFO status
#define NRF24L01_RXFIFO_STATUS_DATA 0x00 // The RX FIFO contains data and available locations
#define NRF24L01_RXFIFO_STATUS_EMPTY 0x01 // The RX FIFO is empty
#define NRF24L01_RXFIFO_STATUS_FULL 0x02 // The RX FIFO is full
#define NRF24L01_RXFIFO_STATUS_ERROR 0x03 // Impossible state: RX FIFO cannot be empty and full at the same time
#define NRF24L01_ADDR_WIDTH 5 // RX/TX address width
#define NRF24L01_PLOAD_WIDTH 32 // Payload width
#define NRF24L01_TEST_ADDR "nRF24"
void NRF24L01_Init(void);
uint8_t NRF24L01_Check(void);
/**
* Dump nRF24L01+ configuration
*/
void NRF24L01_DumpConfig(void);
/**
* Read a 1-bit register
*/
uint8_t NRF24L01_Read_Reg(uint8_t reg);
/**
* Write a 1-byte register
*/
uint8_t NRF24L01_Write_Reg(uint8_t reg,uint8_t value);
/**
* Read a multi-byte register
* reg - register to read
* buf - pointer to the buffer to write
* len - number of bytes to read
*/
uint8_t NRF24L01_Read_To_Buf(uint8_t reg,uint8_t *pBuf,uint8_t len);
/**
* Write a multi-byte register
* reg - register to write
* buf - pointer to the buffer with data
* len - number of bytes to write
*/
uint8_t NRF24L01_Write_From_Buf(uint8_t reg, const uint8_t *pBuf,uint8_t len);
void NRF24L01_SetEnableDynamicPayloads(uint8_t mode);
void NRF24L01_SetEnableAckPayload(uint8_t mode);
/**
* Get status of the RX FIFO
*/
uint8_t NRF24L01_RXFIFO_GetStatus(void);
/**
* Read received data (no fifo status check, no status clear, just read)
*/
uint8_t NRF24L01_ReadPayload(uint8_t *pBuf, uint8_t *length, uint8_t dpl);
/**
* Send data in tx_buf and wait till data is sent or max re-tr reached
*/
uint8_t NRF24L01_TxPacket(uint8_t *tx_buf, uint8_t len);
/**
* Send data in FIFO without sync ack
*/
uint8_t NRF24L01_TxFast(const void *pBuf, uint8_t len);
/**
* Switch NRF24L01 to RX mode
*/
void NRF24L01_RX_Mode(uint8_t *rx_addr, uint8_t *tx_addr);
/**
* Switch NRF24L01 to TX mode
*/
void NRF24L01_TX_Mode(uint8_t *rx_addr, uint8_t *tx_addr);
/**
* Flush the RX FIFO
*/
void NRF24L01_FlushRX(void);
/**
* Flush the TX FIFO
*/
void NRF24L01_FlushTX(void);
/**
* Clear TX error flags
*/
void NRF24L01_ResetTX(void);
/**
* Clear IRQ bit of the STATUS register
* reg - NRF24L01_FLAG_RX_DREADY, NRF24L01_FLAG_TX_DSENT, NRF24L01_FLAG_MAX_RT
*/
void NRF24L01_ClearIRQFlag(uint8_t reg);
/**
* Clear RX_DR, TX_DS and MAX_RT bits of the STATUS register
*/
void NRF24L01_ClearIRQFlags(void);
#endif /*_NRF24L01_H*/

View File

@ -0,0 +1,40 @@
#include "main.h"
#include "py32f0xx_it.h"
/**
* @brief This function handles Non maskable interrupt.
*/
void NMI_Handler(void)
{
}
/**
* @brief This function handles Hard fault interrupt.
*/
void HardFault_Handler(void)
{
while (1)
{
}
}
/**
* @brief This function handles System service call via SWI instruction.
*/
void SVC_Handler(void)
{
}
/**
* @brief This function handles Pendable request for system service.
*/
void PendSV_Handler(void)
{
}
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler(void)
{
}

View File

@ -0,0 +1,19 @@
#ifndef __PY32F0XX_IT_H
#define __PY32F0XX_IT_H
#ifdef __cplusplus
extern "C" {
#endif
void NMI_Handler(void);
void HardFault_Handler(void);
void SVC_Handler(void);
void PendSV_Handler(void);
void SysTick_Handler(void);
#ifdef __cplusplus
}
#endif
#endif /* __PY32F0XX_IT_H */